Approximation in L2 by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator
- Авторлар: Gorbachev D.V.1, Ivanov V.I.1
-
Мекемелер:
- Tula State University
- Шығарылым: Том 100, № 3-4 (2016)
- Беттер: 540-549
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149772
- DOI: https://doi.org/10.1134/S000143461609025X
- ID: 149772
Дәйексөз келтіру
Аннотация
For approximations in the space L2(ℝ+) by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove Jackson’s inequality with exact constant and optimal argument in the modulus of continuity. The optimality of the argument in the modulus of continuity is established using the Gauss quadrature formula on the half-line over the zeros of the eigenfunction of the Sturm–Liouville operator.
Авторлар туралы
D. Gorbachev
Tula State University
Хат алмасуға жауапты Автор.
Email: dvgmail@mail.ru
Ресей, Tula
V. Ivanov
Tula State University
Email: dvgmail@mail.ru
Ресей, Tula
Қосымша файлдар
