Approximation in L2 by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator
- 作者: Gorbachev D.V.1, Ivanov V.I.1
-
隶属关系:
- Tula State University
- 期: 卷 100, 编号 3-4 (2016)
- 页面: 540-549
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149772
- DOI: https://doi.org/10.1134/S000143461609025X
- ID: 149772
如何引用文章
详细
For approximations in the space L2(ℝ+) by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove Jackson’s inequality with exact constant and optimal argument in the modulus of continuity. The optimality of the argument in the modulus of continuity is established using the Gauss quadrature formula on the half-line over the zeros of the eigenfunction of the Sturm–Liouville operator.
作者简介
D. Gorbachev
Tula State University
编辑信件的主要联系方式.
Email: dvgmail@mail.ru
俄罗斯联邦, Tula
V. Ivanov
Tula State University
Email: dvgmail@mail.ru
俄罗斯联邦, Tula
补充文件
