On the Degree of Hilbert Polynomials of Derived Functors


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Given a d-dimensional Cohen–Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen–Macaulay R-module, then, for n large enough and 1 ≤ id, the lengths of the modules ExtRi(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d − 1. It is also shown that

\(\deg \beta _i^R(M/{I^n}M) = \deg \mu _R^i(M/{I^n}M) = d - 1,\)
where βiR (·) and μRi (·) are the ith Betti number and the ith Bass number, respectively.

作者简介

H. Saremi

Department of Mathematics, Sanandaj Branch

编辑信件的主要联系方式.
Email: hero.saremi@gmail.com
伊朗伊斯兰共和国, Sanandaj

A. Mafi

Department of Mathematics

编辑信件的主要联系方式.
Email: A_Mafi@ipm.ir
伊朗伊斯兰共和国, Sanandaj

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019