On the Degree of Hilbert Polynomials of Derived Functors
- 作者: Saremi H.1, Mafi A.2
-
隶属关系:
- Department of Mathematics, Sanandaj Branch
- Department of Mathematics
- 期: 卷 106, 编号 3-4 (2019)
- 页面: 423-428
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152051
- DOI: https://doi.org/10.1134/S0001434619090116
- ID: 152051
如何引用文章
详细
Given a d-dimensional Cohen–Macaulay local ring (R,m), let I be an m-primary ideal, and let J be a minimal reduction ideal of I. If M is a maximal Cohen–Macaulay R-module, then, for n large enough and 1 ≤ i ≤ d, the lengths of the modules ExtRi(R/J,M/InM) and ToriR(R/J,M/InM) are polynomials of degree d − 1. It is also shown that
\(\deg \beta _i^R(M/{I^n}M) = \deg \mu _R^i(M/{I^n}M) = d - 1,\)![]()
where βiR (·) and μRi (·) are the ith Betti number and the ith Bass number, respectively.作者简介
H. Saremi
Department of Mathematics, Sanandaj Branch
编辑信件的主要联系方式.
Email: hero.saremi@gmail.com
伊朗伊斯兰共和国, Sanandaj
A. Mafi
Department of Mathematics
编辑信件的主要联系方式.
Email: A_Mafi@ipm.ir
伊朗伊斯兰共和国, Sanandaj
补充文件
