Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
- Авторлар: Kozhanov A.I.1
-
Мекемелер:
- Sobolev Institute of Mathematics
- Шығарылым: Том 106, № 3-4 (2019)
- Беттер: 378-389
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152036
- DOI: https://doi.org/10.1134/S0001434619090074
- ID: 152036
Дәйексөз келтіру
Аннотация
The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation
\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)![]()
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.Авторлар туралы
A. Kozhanov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: kozhanov@math.nsc.ru
Ресей, Novosibirsk, 630090
Қосымша файлдар
