Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation

\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.

作者简介

A. Kozhanov

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: kozhanov@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019