Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
- 作者: Kozhanov A.I.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 106, 编号 3-4 (2019)
- 页面: 378-389
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152036
- DOI: https://doi.org/10.1134/S0001434619090074
- ID: 152036
如何引用文章
详细
The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation
\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)![]()
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.作者简介
A. Kozhanov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: kozhanov@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
补充文件
