Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
- Autores: Kozhanov A.I.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Edição: Volume 106, Nº 3-4 (2019)
- Páginas: 378-389
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152036
- DOI: https://doi.org/10.1134/S0001434619090074
- ID: 152036
Citar
Resumo
The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation
\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)![]()
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.Sobre autores
A. Kozhanov
Sobolev Institute of Mathematics
Autor responsável pela correspondência
Email: kozhanov@math.nsc.ru
Rússia, Novosibirsk, 630090
Arquivos suplementares
