Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper is devoted to the study of inverse problems of finding, together with a solution u(x, t) of the diffusion equation

\({u_t} - \Delta u + [c(x,t) + a{q_0}(x,t)]u = f(x,t),\)
the parameter a characterizing absorption (c(x,t) and q0(x,t) are given functions). It is assumed that, on the function u(x,t), nonpercolation conditions and some special overdetermination conditions of integral form are imposed. We prove existence theorems for solutions (u(x,t),a) such that the function u(x, t) has all Sobolev generalized derivatives appearing in the equation and a is a nonnegative number.

Sobre autores

A. Kozhanov

Sobolev Institute of Mathematics

Autor responsável pela correspondência
Email: kozhanov@math.nsc.ru
Rússia, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019