Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 99, № 3-4 (2016)

Article

C*-algebra of integral operators with homogeneous kernels and oscillating coefficients

Avsyankin O.

Аннотация

We consider the C*-algebra generated by multidimensional integral operators with (−n)th-order homogeneous kernels and by the operators of multiplication by oscillating coefficients of the form |x|. For this algebra, we construct an operator symbolic calculus and obtain necessary and sufficient conditions for the Fredholm property of an operator in terms of this calculus.

Mathematical Notes. 2016;99(3-4):345-353
pages 345-353 views

On the properties of topological entropy on a compact family of maps

Vetokhin A.

Аннотация

The properties of topological entropy as a function on a compact family of maps of a compact metric space are studied.

Mathematical Notes. 2016;99(3-4):354-361
pages 354-361 views

When does the zero-one k-law fail?

Zhukovskii M., Medvedeva A.

Аннотация

The limit probabilities of the first-order properties of a random graph in the Erdős–Rényi model G(n, nα), α ∈ (0, 1), are studied. A random graph G(n, nα) is said to obey the zero-one k-law if, given any property expressed by a formula of quantifier depth at most k, the probability of this property tends to either 0 or 1. As is known, for α = 1− 1/(2k−1 + a/b), where a > 2k−1, the zero-one k-law holds. Moreover, this law does not hold for b = 1 and a ≤ 2k−1 − 2. It is proved that the k-law also fails for b > 1 and a ≤ 2k−1 − (b + 1)2.

Mathematical Notes. 2016;99(3-4):362-367
pages 362-367 views

Composition operators of convolution and multiplication by a function

Zabirova K., Napalkov V.

Аннотация

We study an operator which is the composition of the convolution operator and the operator of multiplication by a fixed entire function. Such operators find applications in the Fisher expansion problem, the Cauchy problem for convolution operators, etc.

Mathematical Notes. 2016;99(3-4):368-377
pages 368-377 views

Inversion of the Cauchy–Bunyakovskii–Schwarz inequality

Kan I.

Аннотация

In the present paper, the inequality inverse to the Cauchy–Bunyakovskii–Schwarz inequality and generalizing other well-known inversions of this inequality is proved.

Mathematical Notes. 2016;99(3-4):378-381
pages 378-381 views

Besicovitch cylindrical transformation with a Hölder function

Kochergin A.

Аннотация

For any γ ∈ (0, 1) and ε > 0, we construct a cylindrical cascade with a γ-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than 1 − γε.

Mathematical Notes. 2016;99(3-4):382-389
pages 382-389 views

Mineyev–Dicks proof of the HN-conjecture and the Euler–Poincaré characteristic

Noskov G.

Аннотация

A proof of the Hanna Neumann conjecture (HN-conjecture) based on the ideas of Mineyev andDicks is presented. The new ingredients are theQuillen formula for the Euler–Poincaré characteristic and the “abstract HN-conjecture.”

Mathematical Notes. 2016;99(3-4):390-396
pages 390-396 views

Classification of zeta functions of bielliptic surfaces over finite fields

Rybakov S.

Аннотация

Let S be a bielliptic surface over a finite field, and let an elliptic curve B be the Albanese variety of S; then the zeta function of the surface S is equal to the zeta function of the direct product P1 × B. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].

Mathematical Notes. 2016;99(3-4):397-405
pages 397-405 views

Multidimensional Watson lemma and its applications

Rytova A., Yarovaya E.

Аннотация

We prove the multidimensional analog of the well-knownWatson lemma and then apply it to prove a local limit theorem for the transition probabilities of symmetric random walks on the multidimensional lattice with infinite variance of jumps.

Mathematical Notes. 2016;99(3-4):406-412
pages 406-412 views

On the primality property of central polynomials of prime varieties of associative algebras

Samoilov L.

Аннотация

In the paper, it is proved that, if f(x1,..., xn)g(y1,..., ym) is a multilinear central polynomial for a verbally prime T-ideal Γ over a field of arbitrary characteristic, then both polynomials f(x1,..., xn) and g(y1,..., ym) are central for Γ.

Mathematical Notes. 2016;99(3-4):413-416
pages 413-416 views

Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions

Starovoitov A., Kechko E.

Аннотация

In this paper, we establish upper bounds for the moduli of zeros of Hermite–Padé approximations of type I for a system of exponential functions \(\left\{ {{e^{{\lambda _{{p^z}}}}}} \right\}_{p = 0}^k\), where \(\left\{ {{\lambda _p}} \right\}_{p = 0}^k\) are various arbitrary complex numbers. The proved statements supplement and generalize well-known results due to Saff and Varga, as well as those due to Stahl and Wielonsky, on the behavior of zeros of Hermite–Padé approximations for a set of exponential functions \(\left\{ {{e^{pz}}} \right\}_{p = 0}^k\).

Mathematical Notes. 2016;99(3-4):417-425
pages 417-425 views

On multilayer films on the boundary of a half-space

Kholodovskii S.

Аннотация

Generalized boundary conditions on multilayer films bounding a half-space and consisting of alternating infinitely thin strongly and weakly permeable layers are derived. The solution of the problem for the Laplace equation in a half-plane D bounded by a three-layer film is expressed in simple quadratures in terms of the solution of the classical Dirichlet problem in D without a film.

Mathematical Notes. 2016;99(3-4):426-431
pages 426-431 views

The Fourier coefficients of continuous functions with respect to certain orthonormal systems

Tsagareishvili V.

Аннотация

The properties of the Fourier coefficients for some classes of functions with respect to both the Haar system and general orthonormal systems are studied. It is established that the results obtained in the paper cannot be strengthened.

Mathematical Notes. 2016;99(3-4):432-443
pages 432-443 views

Equitable colorings of nonuniform hypergraphs

Shirgazina I.

Аннотация

The well-known extremal problem on hypergraph colorings is studied. We investigate whether it is possible to color a hypergraph with a fixed number of colors equitably, i.e., so that, on the one hand, no edge is monochromatic and, on the other hand, the cardinalities of the color classes are almost the same. It is proved that if H = (V,E) is a simple hypergraph in which the least cardinality of an edge equals k, |V| = n, r|n, and

\(\sum\limits_{e \in E} {{r^{1 - \left| e \right|}}} \leqslant c\sqrt k ,\)
where c > 0 is an absolute constant, then there exists an equitable r-coloring of H.

Mathematical Notes. 2016;99(3-4):444-456
pages 444-456 views

Inequality for a trace on a unital C*-algebra

Bikchentaev A.

Аннотация

A new inequality for a trace on a unital C*-algebra is established. It is shown that the inequality obtained characterizes the traces in the class of all positive functionals on a unital C*-algebra. A new criterion for the commutativity of unital C*-algebras is proved.

Mathematical Notes. 2016;99(3-4):487-491
pages 487-491 views

On the multiplicity of eigenvalues of the Sturm–Liouville problem on graphs

Diab A., Kaldybekova B., Penkin O.

Аннотация

Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.

Mathematical Notes. 2016;99(3-4):492-502
pages 492-502 views

The Hardy–Littlewood theorem for multiple fourier series with monotone coefficients

D’yachenko M., Nursultanov E., Nursultanov M.

Аннотация

It was proved earlier that, for multiple Fourier series whose coefficients are monotone in each index, the classicalHardy–Littlewood theorem is not valid for p ≤ 2m/(m+1), where m is the dimension of the space. We establish how the theorem must be modified in this case.

Mathematical Notes. 2016;99(3-4):503-510
pages 503-510 views

Universal zero-one k-law

Zhukovskii M., Matushkin A.

Аннотация

The limit probabilities of first-order properties of a random graph in the Erdős–Rényi model G(n, nα), α ∈ (0, 1), are studied. For any positive integer k ≥ 4 and any rational number t/s ∈ (0, 1), an interval with right endpoint t/s is found in which the zero-one k-law holds (the zero-one k-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most k).Moreover, it is proved that, for rational numbers t/s with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as n→∞) as that of the length of the maximal interval with right endpoint t/s in which the zero-one k-law holds.

Mathematical Notes. 2016;99(3-4):511-523
pages 511-523 views

Metrically and topologically projective ideals of Banach algebras

Nemesh N.

Аннотация

In the present paper, necessary conditions for the metric and topological projectivity of closed ideals of Banach algebras are given. In the case of commutative Banach algebras, a criterion for the metric and topological projectivity of ideals admitting a bounded approximate identity is obtained. The main result of the paper is as follows: a closed ideal of an arbitrary C*-algebra is metrically or topologically projective if and only if it admits a self-adjoint right identity.

Mathematical Notes. 2016;99(3-4):524-533
pages 524-533 views

On the complexity of the family of convex sets in ℝd

Pernay V.

Аннотация

Estimates of quantities characterizing the complexity of the family of convex subsets of the d-dimensional cube [1, n]d as n→∞ are given. The geometric properties of spaces with norm generated by the generalized majorant of partial sums are studied.

Mathematical Notes. 2016;99(3-4):534-544
pages 534-544 views

On the number of edges in induced subgraphs of a special distance graph

Pushnyakov F.

Аннотация

We obtain new estimates for the number of edges in induced subgraphs of a special distance graph.

Mathematical Notes. 2016;99(3-4):545-551
pages 545-551 views

The Goursat problem for the fractional telegraph equation with Caputo derivatives

Pshibihova R.

Аннотация

The Goursat problem for the fractional telegraph equation with Caputo derivatives is studied. An existence and uniqueness theorem for the solution of the problem is proved.

Mathematical Notes. 2016;99(3-4):552-555
pages 552-555 views

Independence numbers of random subgraphs of distance graphs

Pyaderkin M.

Аннотация

We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erdős–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erdős–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.

Mathematical Notes. 2016;99(3-4):556-563
pages 556-563 views

Approximation by Fourier means and generalized moduli of smoothness

Runovski K.

Аннотация

The quality of approximation by Fourier means generated by an arbitrary generator with compact support in the spaces Lp, 1 ≤ p ≤ +∞, of 2π-periodic pth integrable functions and in the space C of continuous 2π-periodic functions in terms of the generalized modulus of smoothness constructed froma 2π-periodic generator is studied. Natural sufficient conditions on the generator of the approximation method and values of smoothness ensuring the equivalence of the corresponding approximation error and modulus are obtained. As applications, Fourier means generated by classical kernels as well as the classical moduli of smoothness are considered.

Mathematical Notes. 2016;99(3-4):564-575
pages 564-575 views

The logarithm of the modulus of a holomorphic function as a minorant for a subharmonic function

Khabibullin B., Baiguskarov T.

Аннотация

For an arbitrary subharmonic function not identically equal to −∞ in a domain D of the complex plane C, we prove the existence of a nonzero holomorphic function in D the logarithm of whose modulus is majorized by locally averaging a subharmonic function with logarithmic additions or even without them in the case D = C.

Mathematical Notes. 2016;99(3-4):576-589
pages 576-589 views

Trigonometric integrals over one-dimensional quasilattices of arbitrary codimension

Shutov A.

Аннотация

The class of one-dimensional quasilattices parametrized by translations of the torus is studied. The trigonometric integrals averaging the moduli of trigonometric sums related to quasilattices are considered for this class. Nontrivial estimates of such integrals are obtained. The relationship between trigonometric integrals and several problems in the theory of Diophantine approximations is discussed.

Mathematical Notes. 2016;99(3-4):590-597
pages 590-597 views

Short Communications

pages 457-459 views

On the relationship between Nevanlinna and quadrature domains

Borovik E., Fedorovskii K.
Mathematical Notes. 2016;99(3-4):460-464
pages 460-464 views

On the parabolic problem of motion of thermoviscoelastic media

Zvyagin V., Orlov V.
Mathematical Notes. 2016;99(3-4):465-469
pages 465-469 views

On the first moment of the Gauss sum

Kalmynin A.
Mathematical Notes. 2016;99(3-4):470-476
pages 470-476 views

On the role of the gravity of Earth in a quasistatic process

Maslov V.
Mathematical Notes. 2016;99(3-4):477-479
pages 477-479 views
pages 480-483 views

Spectral properties of the Hill operator

Baskakov A., Polyakov D.
Mathematical Notes. 2016;99(3-4):598-602
pages 598-602 views

Convergence of Fourier series with respect to general orthonormal systems

Gogoladze L., Tsagareishvili V.
Mathematical Notes. 2016;99(3-4):603-607
pages 603-607 views

On estimates of solutions to elliptic inequalities near a singular point

Kon’kov A.
Mathematical Notes. 2016;99(3-4):608-610
pages 608-610 views
pages 611-615 views

Remark on the notion of optimal data compression in information theory

Maslov V., Nazaikinskii V.
Mathematical Notes. 2016;99(3-4):616-618
pages 616-618 views

Inverse and implicit function theorems in the class of subsmooth maps

Orlov I.
Mathematical Notes. 2016;99(3-4):619-622
pages 619-622 views

On the surjectivity of quadratic stochastic operators acting on the simplex

Saburov M.
Mathematical Notes. 2016;99(3-4):623-627
pages 623-627 views

Erratum

pages 628-628 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».