Universal zero-one k-law


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The limit probabilities of first-order properties of a random graph in the Erdős–Rényi model G(n, nα), α ∈ (0, 1), are studied. For any positive integer k ≥ 4 and any rational number t/s ∈ (0, 1), an interval with right endpoint t/s is found in which the zero-one k-law holds (the zero-one k-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most k).Moreover, it is proved that, for rational numbers t/s with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as n→∞) as that of the length of the maximal interval with right endpoint t/s in which the zero-one k-law holds.

Sobre autores

M. Zhukovskii

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: zhukmax@gmail.com
Rússia, Dolgoprudnyi

A. Matushkin

Moscow Institute of Physics and Technology

Email: zhukmax@gmail.com
Rússia, Dolgoprudnyi

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016