Approximation properties of fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses
- Авторы: Sharapudinov I.I.1,2
-
Учреждения:
- Daghestan Research Center
- Daghestan State Pedagogical University
- Выпуск: Том 101, № 3-4 (2017)
- Страницы: 718-734
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150030
- DOI: https://doi.org/10.1134/S0001434617030300
- ID: 150030
Цитировать
Аннотация
We study Fourier series of Jacobi polynomials Pkα−r,−r (x), k = r, r +1,..., orthogonal with respect to the Sobolev-type inner product of the following form: \(\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{\left( v \right)}}} \left( { - 1} \right){g^{\left( v \right)}}\left( { - 1} \right) + \int_{ - 1}^1 {{f^{\left( r \right)}}} {g^{\left( r \right)}}\left( t \right){\left( {1 - t} \right)^\alpha }dt\). It is shown that such series are a particular case of mixed series of Jacobi polynomials Pkα,β(x), k = 0, 1,..., considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials Pkα−r,−r (x).
Об авторах
I. Sharapudinov
Daghestan Research Center; Daghestan State Pedagogical University
Автор, ответственный за переписку.
Email: sharapud@mail.ru
Россия, Makhachkala; Makhachkala
Дополнительные файлы
