Approximation properties of fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses
- 作者: Sharapudinov I.I.1,2
-
隶属关系:
- Daghestan Research Center
- Daghestan State Pedagogical University
- 期: 卷 101, 编号 3-4 (2017)
- 页面: 718-734
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150030
- DOI: https://doi.org/10.1134/S0001434617030300
- ID: 150030
如何引用文章
详细
We study Fourier series of Jacobi polynomials Pkα−r,−r (x), k = r, r +1,..., orthogonal with respect to the Sobolev-type inner product of the following form: \(\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{\left( v \right)}}} \left( { - 1} \right){g^{\left( v \right)}}\left( { - 1} \right) + \int_{ - 1}^1 {{f^{\left( r \right)}}} {g^{\left( r \right)}}\left( t \right){\left( {1 - t} \right)^\alpha }dt\). It is shown that such series are a particular case of mixed series of Jacobi polynomials Pkα,β(x), k = 0, 1,..., considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials Pkα−r,−r (x).
作者简介
I. Sharapudinov
Daghestan Research Center; Daghestan State Pedagogical University
编辑信件的主要联系方式.
Email: sharapud@mail.ru
俄罗斯联邦, Makhachkala; Makhachkala
补充文件
