Approximation properties of fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study Fourier series of Jacobi polynomials Pkα−r,−r (x), k = r, r +1,..., orthogonal with respect to the Sobolev-type inner product of the following form: \(\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{\left( v \right)}}} \left( { - 1} \right){g^{\left( v \right)}}\left( { - 1} \right) + \int_{ - 1}^1 {{f^{\left( r \right)}}} {g^{\left( r \right)}}\left( t \right){\left( {1 - t} \right)^\alpha }dt\). It is shown that such series are a particular case of mixed series of Jacobi polynomials Pkα,β(x), k = 0, 1,..., considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials Pkα−r,−r (x).

Авторлар туралы

I. Sharapudinov

Daghestan Research Center; Daghestan State Pedagogical University

Хат алмасуға жауапты Автор.
Email: sharapud@mail.ru
Ресей, Makhachkala; Makhachkala

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017