Approximation properties of fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses
- Авторлар: Sharapudinov I.I.1,2
-
Мекемелер:
- Daghestan Research Center
- Daghestan State Pedagogical University
- Шығарылым: Том 101, № 3-4 (2017)
- Беттер: 718-734
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150030
- DOI: https://doi.org/10.1134/S0001434617030300
- ID: 150030
Дәйексөз келтіру
Аннотация
We study Fourier series of Jacobi polynomials Pkα−r,−r (x), k = r, r +1,..., orthogonal with respect to the Sobolev-type inner product of the following form: \(\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{\left( v \right)}}} \left( { - 1} \right){g^{\left( v \right)}}\left( { - 1} \right) + \int_{ - 1}^1 {{f^{\left( r \right)}}} {g^{\left( r \right)}}\left( t \right){\left( {1 - t} \right)^\alpha }dt\). It is shown that such series are a particular case of mixed series of Jacobi polynomials Pkα,β(x), k = 0, 1,..., considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials Pkα−r,−r (x).
Авторлар туралы
I. Sharapudinov
Daghestan Research Center; Daghestan State Pedagogical University
Хат алмасуға жауапты Автор.
Email: sharapud@mail.ru
Ресей, Makhachkala; Makhachkala
Қосымша файлдар
