On Extrapolation of Polynomials with Real Coefficients to the Complex Plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of the greatest possible absolute value of the kth derivative of an algebraic polynomial of order n > k with real coefficients at a given point of the complex plane is considered. It is assumed that the polynomial is bounded by 1 on the interval [-1,1]. It is shown that the solution is attained for the polynomial κ · Tσ, where Tσ is one of the Zolotarev or Chebyshev polynomials and κ is a number.

作者简介

A. Kochurov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kochurovo@mech.math.msu.su
俄罗斯联邦, Moscow, 119991

V. Tikhomirov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vmtikh@googlemail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019