On Extrapolation of Polynomials with Real Coefficients to the Complex Plane
- 作者: Kochurov A.S.1, Tikhomirov V.M.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 106, 编号 3-4 (2019)
- 页面: 572-576
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/152132
- DOI: https://doi.org/10.1134/S0001434619090256
- ID: 152132
如何引用文章
详细
The problem of the greatest possible absolute value of the kth derivative of an algebraic polynomial of order n > k with real coefficients at a given point of the complex plane is considered. It is assumed that the polynomial is bounded by 1 on the interval [-1,1]. It is shown that the solution is attained for the polynomial κ · Tσ, where Tσ is one of the Zolotarev or Chebyshev polynomials and κ is a number.
作者简介
A. Kochurov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: kochurovo@mech.math.msu.su
俄罗斯联邦, Moscow, 119991
V. Tikhomirov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: vmtikh@googlemail.com
俄罗斯联邦, Moscow, 119991
补充文件
