One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider integrals of the form

\(I\left( {x,h} \right) = \frac{1}{{{{\left( {2\pi h} \right)}^{k/2}}}}\int_{{\mathbb{R}^k}} {f\left( {\frac{{S\left( {x,\theta } \right)}}{h},x,\theta } \right)} d\theta \)
, where h is a small positive parameter and S(x, θ) and f(τ, x, θ) are smooth functions of variables τ ∈ ℝ, x ∈ ℝn, and θ ∈ ℝk; moreover, S(x, θ) is real-valued and f(τ, x, θ) rapidly decays as |τ| →∞. We suggest an approach to the computation of the asymptotics of such integrals as h → 0 with the use of the abstract stationary phase method.

作者简介

S. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

编辑信件的主要联系方式.
Email: dobr@ipmnet.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

A. Tsvetkova

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018