One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider integrals of the form

\(I\left( {x,h} \right) = \frac{1}{{{{\left( {2\pi h} \right)}^{k/2}}}}\int_{{\mathbb{R}^k}} {f\left( {\frac{{S\left( {x,\theta } \right)}}{h},x,\theta } \right)} d\theta \)
, where h is a small positive parameter and S(x, θ) and f(τ, x, θ) are smooth functions of variables τ ∈ ℝ, x ∈ ℝn, and θ ∈ ℝk; moreover, S(x, θ) is real-valued and f(τ, x, θ) rapidly decays as |τ| →∞. We suggest an approach to the computation of the asymptotics of such integrals as h → 0 with the use of the abstract stationary phase method.

Sobre autores

S. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: dobr@ipmnet.ru
Rússia, Moscow; Dolgoprudny, Moscow Oblast

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
Rússia, Moscow; Dolgoprudny, Moscow Oblast

A. Tsvetkova

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
Rússia, Moscow; Dolgoprudny, Moscow Oblast

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018