One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider integrals of the form

\(I\left( {x,h} \right) = \frac{1}{{{{\left( {2\pi h} \right)}^{k/2}}}}\int_{{\mathbb{R}^k}} {f\left( {\frac{{S\left( {x,\theta } \right)}}{h},x,\theta } \right)} d\theta \)
, where h is a small positive parameter and S(x, θ) and f(τ, x, θ) are smooth functions of variables τ ∈ ℝ, x ∈ ℝn, and θ ∈ ℝk; moreover, S(x, θ) is real-valued and f(τ, x, θ) rapidly decays as |τ| →∞. We suggest an approach to the computation of the asymptotics of such integrals as h → 0 with the use of the abstract stationary phase method.

Авторлар туралы

S. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

A. Tsvetkova

Ishlinsky Institute for Problems in Mechanics RAS; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018