Models of Pattern Recognition and Forest State Estimation Based on Hyperspectral Remote Sensing Data
- Авторлар: Kozoderov V.V.1, Dmitriev E.V.2
-
Мекемелер:
- Moscow State University
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
- Шығарылым: Том 54, № 9 (2018)
- Беттер: 1291-1302
- Бөлім: Methods and Means of Satellite Data Processing and Interpretation
- URL: https://journals.rcsi.science/0001-4338/article/view/148660
- DOI: https://doi.org/10.1134/S0001433818090220
- ID: 148660
Дәйексөз келтіру
Аннотация
Model applications of airborne hyperspectral remote sensing data for the recognition of forest stand objects and parameterization of the environmental role of forests in climatic models are discussed. The article is focused primarily on a comparison of the data obtained by ground-based forest inspections and the results of processing of hyper-spectral images of a test area. The examples of such a comparison intended to determine the net primary productivity of forests and other parameters characterizing the biodiversity of forest vegetation are considered.
Авторлар туралы
V. Kozoderov
Moscow State University
Хат алмасуға жауапты Автор.
Email: vkozod@mail.ru
Ресей, Moscow, 119234
E. Dmitriev
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Email: vkozod@mail.ru
Ресей, Moscow
Қосымша файлдар
