Models of Pattern Recognition and Forest State Estimation Based on Hyperspectral Remote Sensing Data


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Model applications of airborne hyperspectral remote sensing data for the recognition of forest stand objects and parameterization of the environmental role of forests in climatic models are discussed. The article is focused primarily on a comparison of the data obtained by ground-based forest inspections and the results of processing of hyper-spectral images of a test area. The examples of such a comparison intended to determine the net primary productivity of forests and other parameters characterizing the biodiversity of forest vegetation are considered.

Sobre autores

V. Kozoderov

Moscow State University

Autor responsável pela correspondência
Email: vkozod@mail.ru
Rússia, Moscow, 119234

E. Dmitriev

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: vkozod@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018