Verification of an Expert System for Forecasting Ice-Block-Formation: The Case of the Northern Dvina River


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Here we provide a short description of an expert system for predicting the ice-jamming power in the area of the Northern Dvina River and a procedure to verify this system. This expert system is based on hydrological and meteorological data for 1991–2016. The data were processed using a machine learning technique and adjacent mathematics, because there is no mathematical model of the ice-jamming process and time series of observations are too short to apply classical statistics. This expert system was developed in 2012; it was adjusted using data from 1991–2010 seasons obtained at hydrological stations. The current investigation involves additional data on 2011–2016 seasons to repeat learning and estimate system quality. The developed system demonstrates a reliable efficiency: the forecast results coincide with observations for all six added seasons (2011–2016). It should be noted that the additional data do not change forecast accuracy, which remained approximately 85%, like in the previous study. All developed software is cross-platform, written with a C++ language, and is implemented as a command line application. This software can be easily adopted to operate as a part of the Northern Dvina River online monitoring service.

Об авторах

I. Aleshin

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: ima@ifz.ru
Россия, Moscow, 123995; Arkhangelsk, 163000

I. Malygin

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: malygin.iv@gmail.com
Россия, Moscow, 123995

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).