Systemic Inflammatory Response as a Prognostic Factor in Breast Cancer. Part II. Hematological Markers of Inflammation

Cover Page

Cite item

Full Text

Abstract

Chronic inflammation is one of the recognized factors contributing to the onset and progression of malignant neoplasms. At the systemic level, a chronic inflammatory process is accompanied by an increased levels of inflammatory mediators and a change in hematological parameters of peripheral blood. According to numerous clinical studies, the change in the ratio of blood cell populations in cancer patients is an independent prognostic factor in malignant tumors of various localizations. This review is devoted to hematological parameters of the systemic inflammatory response (SIR) in breast cancer (BC). The review presents the characteristics of blood cells used for calculations of hematological indices (neutrophils, lymphocytes, monocytes, platelets); approaches for assessing SIR using these indices (NLR, PLR, LMR, etc.); comparative analysis of data on the association of the hematological indices with the clinical and morphological features of BC, patient survival and tumor response to chemotherapy. The data indicating the benefit of SIR hematological markers investigation during monitoring after treatment are summarized. Complex algorithms, including clinical, morphological and hematological factors, which are proposed to improve the quality of prognosis assessment, are considered. The information accumulated to date suggests that hematological indices reflecting SIR activity in BC patients can serve as additional independent prognostic factors. The development of the prognostic algorithms that are informative for certain clinical groups of BC patients is a promising area of research.

About the authors

Natalia S. Sergeeva

P.A. Herzen Moscow Oncology Research Institute

Email: prognoz.01@mail.ru
ORCID iD: 0000-0001-7406-9973
SPIN-code: 1805-8141
Scopus Author ID: 7102748586
ResearcherId: I-2033-2014

PhD in Biology, Professor

Russian Federation, 3, 2nd Botkinsky passage, 125284, Moscow

Tatiana A. Karmakova

P.A. Herzen Moscow Oncology Research Institute

Author for correspondence.
Email: kalmar123@yandex.ru
ORCID iD: 0000-0002-8017-5657
SPIN-code: 4364-6134
Scopus Author ID: 6603382243
ResearcherId: L-3592-2018

PhD in Biology

Russian Federation, 3, 2nd Botkinsky passage, 125284, Moscow

Marianna A. Polyak

P.A. Herzen Moscow Oncology Research Institute

Email: marianna29@yandex.ru
ORCID iD: 0000-0003-3347-3106
SPIN-code: 1134-3930

MD

Russian Federation, 3, 2nd Botkinsky passage, 125284, Moscow

Igor I. Alentov

P.A. Herzen Moscow Oncology Research Institute

Email: igoralentov@yandex.ru
ORCID iD: 0000-0002-5920-5823
SPIN-code: 9992-7676
Scopus Author ID: 54683346300

PhD in Biology

Russian Federation, 3, 2nd Botkinsky passage, 125284, Moscow

References

  1. Greten FR, Grivennikov SI. Inflammation and сancer: Triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi: https://doi.org/10.1016/j.immuni.2019.06.025
  2. Hibino S, Kawazoe T, Kasahara H, et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021;22(11):5421. doi: https://doi.org/10.3390/ijms22115421
  3. Salemme V, Centonze G, Cavallo F, et al. The crosstalk between tumor cells and the immune microenvironment in breast cancer: Implications for immunotherapy. Front Oncol. 2021;11:610303. doi: https://doi.org/10.3389/fonc.2021.610303
  4. Brenner DR, Scherer D, Muir K, et al. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1729–1751. doi: https://doi.org/10.1158/1055-9965.EPI-14-0064
  5. Guner A, Kim HI. Biomarkers for evaluating the inflammation status in patients with cancer. J Gastric Cancer. 2019;19(3):254–277. doi: https://doi.org/10.5230/jgc.2019.19.e29
  6. Dolan RD, Lim J, McSorley ST, et al. The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: Systematic review and meta-analysis. Sci Rep. 2017;7(1):16717. doi: https://doi.org/10.1038/s41598-017-16955-5
  7. Vesely MD, Kershaw MH, Schreiber RD, et al. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–271. doi: https://doi.org/10.1146/annurev-immunol-031210-101324
  8. Kotoula V, Chatzopoulos K, Lakis S, et al. Tumors with high-density tumor infiltrating lymphocytes constitute a favorable entity in breast cancer: a pooled analysis of four prospective adjuvant trials. Oncotarget. 2016;7(4):5074–5087. doi: https://doi.org/10.18632/oncotarget.6231
  9. Venkatesulu BP, Mallick S, Lin SH, et al. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hematol. 2018;123:42–51. doi: https://doi.org/10.1016/j.critrevonc.2018.01.003
  10. Emile G, Penager S, Levy C, et al. Baseline lymphopenia as prognostic factor in patients with metastatic breast cancer treated with palbociclib. Oncol Lett. 2022;23(1):25. doi: https://doi.org/10.3892/ol.2021.13143
  11. Lee KH, Kim EY, Yun JS, et al. The prognostic and predictive value of tumor-infiltrating lymphocytes and hematologic parameters in patients with breast cancer. BMC Cancer. 2018;18(1):938. doi: https://doi.org/10.1186/s12885-018-4832-5
  12. Yoon CI, Park S, Cha YJ, et al. Associations between absolute neutrophil count and lymphocyte-predominant breast cancer. Breast. 2020;50:141–148. doi: https://doi.org/10.1016/j.breast.2019.09.013
  13. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173. doi: https://doi.org/10.1186/s13045-021-01187-y
  14. Hajizadeh F, Aghebati Maleki L, Alexander M, et al. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci. 2021;264:118699. doi: https://doi.org/10.1016/j.lfs.2020.118699
  15. Margraf A, Zarbock A. Platelets in inflammation and resolution. J Immunol. 2019;203(9):2357–2367. doi: https://doi.org/10.4049/jimmunol.1900899
  16. Plantureux L, Mège D, Crescence L, et al. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers (Basel). 2018;10(11):441. doi: https://doi.org/10.3390/cancers10110441
  17. Ward MP, Kane LE, Norris LA, et al. Platelets, immune cells and the coagulation cascade; friend or foe of the circulating tumour cell? Mol Cancer. 2021;20(1):59. doi: https://doi.org/10.1186/s12943-021-01347-1
  18. Chen Y, Song Y, Du W et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019;26(1):78. doi: https://doi.org/10.1186/s12929-019-0568-z
  19. Guo S, Chen X, Guo C, et al. Tumour-associated macrophages heterogeneity drives resistance to clinical therapy. Expert Rev Mol Med. 2022;24:e17. doi: https://doi.org/10.1017/erm.2022.8
  20. Kiss M, Caro AA, Raes G, et al. Systemic reprogramming of monocytes in cancer. Front Oncol. 2020;10:1399. doi: https://doi.org/10.3389/fonc.2020.01399
  21. Templeton AJ, McNamara MG, Seruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124. doi: https://doi.org/10.1093/jnci/dju124
  22. Li B, Zhou P, Liu Y, et al. Platelet-to-lymphocyte ratio in advanced cancer: Review and meta-analysis. Clin Chim Acta. 2018;483:48–56. doi: https://doi.org/10.1016/j.cca.2018.04.023
  23. Mao Y, Chen D, Duan S, et al. Prognostic impact of pretreatment lymphocyte-to-monocyte ratio in advanced epithelial cancers: a meta-analysis. Cancer Cell Int. 2018;18:201. doi: https://doi.org/10.1186/s12935-018-0698-5
  24. Zhang F, Huang M, Zhou H, et al. A nomogram to predict the pathologic complete response of neoadjuvant chemotherapy in triple-negative breast cancer based on simple laboratory indicators. Ann Surg Oncol. 2019;26(12):3912–3919. doi: https://doi.org/10.1245/s10434-019-07655-7
  25. Zhu J, Jiao D, Zhao Y, et al. Development of a predictive model utilizing the neutrophil to lymphocyte ratio to predict neoadjuvant chemotherapy efficacy in early breast cancer patients. Sci Rep. 2021;11(1):1350. doi: https://doi.org/10.1038/s41598-020-80037-2
  26. Ueno A, Maeda R, Kin T, et al. Utility of the absolute lymphocyte count and neutrophil/lymphocyte ratio for predicting survival in patients with metastatic breast cancer on eribulin: A real-world observational study. Chemotherapy. 2019;64(5–6):259–269. doi: https://doi.org/10.1159/000507043
  27. Yao X, Huang J, Zhong H, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther. 2014;141(2):125–139. doi: https://doi.org/10.1016/j.pharmthera.2013.09.004
  28. Nakamoto S, Ikeda M, Kubo S, et al. The systemic immune markers at diagnosis can predict the survival benefit in advanced breast cancer. Cancer Diagn Progn. 2021;1(5):471–478. doi: https://doi.org/10.21873/cdp.10063
  29. Kim D, Bae SJ, Ahn SG, et al. RT-induced dynamic changes in the lymphocyte-to-monocyte ratio in patients with breast cancer indicate poor prognosis. Breast Cancer Res Treat. 2022;193(3):637–647. doi: https://doi.org/10.1007/s10549-022-06601-8
  30. Ma Y, Zhang J, Chen X. Lymphocyte-to-monocyte ratio is associated with the poor prognosis of breast cancer patients receiving neoadjuvant chemotherapy. Cancer Manag Res. 2021;13:1571–1580. doi: https://doi.org/10.2147/CMAR.S292048
  31. Deng JP, Hua X, Long ZQ, et al. Prognostic value of skeletal muscle index and monocyte-to-lymphocyte ratio for lymph node-positive breast cancer patients after mastectomy. Ann Transl Med. 2019;7(23):775. doi: https://doi.org/10.21037/atm.2019.11.37
  32. Truffi M, Piccotti F, Albasini S, et al. Preoperative systemic inflammatory biomarkers are independent predictors of disease recurrence in ER+ HER2- early breast cancer. Front Oncol. 2021;11:773078. doi: https://doi.org/10.3389/fonc.2021.773078
  33. Moldoveanu D, Pravongviengkham V, Best G, et al. Dynamic neutrophil-to-lymphocyte ratio: A novel prognosis measure for triple-negative breast cancer. Ann Surg Oncol. 2020;27(10):4028–4034. doi: https://doi.org/10.1245/s10434-020-08302-2
  34. Corbeau I, Jacot W, Guiu S. Neutrophil to lymphocyte ratio as prognostic and predictive factor in breast cancer patients: A systematic review. Cancers (Basel). 2020;12(4):958. doi: https://doi.org/10.3390/cancers12040958
  35. Azab B, Camacho-Rivera M, Taioli E. Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS One. 2014;9(11):e112361. doi: https://doi.org/10.1371/journal.pone.0112361
  36. Lin BD, Hottenga JJ, Abdellaoui A, et al. Causes of variation in the neutrophil-lymphocyte and platelet-lymphocyte ratios: a twin-family study. Biomark Med. 2016;10(10):1061–1072. doi: https://doi.org/10.2217/bmm-2016-0147
  37. Howard R, Scheiner A, Kanetsky PA, et al. Sociodemographic and lifestyle factors associated with the neutrophil-to-lymphocyte ratio. Ann Epidemiol. 2019;38:11–21.e6. doi: https://doi.org/10.1016/j.annepidem.2019.07.015
  38. Jiang L, Fang J, Ding J. High systemic immune-inflammation index predicts poor survival in patients with human epidermal growth factor receptor-2 positive breast cancer receiving adjuvant trastuzumab. Cancer Manag Res. 2020;12:475–484. doi: https://doi.org/10.2147/CMAR.S231444
  39. He Q, Li JY, Ren Q-L. Efficacy of neoadjuvant single or dual anti-HER-2 therapy combined with chemotherapy in patients with HER-2-positive breast cancer: A single-center retrospective study. Asian Pac J Cancer Prev. 2021;22(5):1467–1475. doi: https://doi.org/10.31557/APJCP.2021.22.5.1467
  40. Ligorio F, Fucà G, Zattarin E, et al. The pan-immune-inflammation-value predicts the survival of patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer treated with first-line taxane-trastuzumab-pertuzumab. Cancers (Basel). 2021;13(8):1964. doi: https://doi.org/10.3390/cancers13081964
  41. Deng Y, Li W, Liu X, et al. The combination of platelet count and lymphocyte to monocyte ratio is a prognostic factor in patients with resected breast cancer. Medicine (Baltimore). 2020;99(18):e18755. doi: https://doi.org/10.1097/MD.0000000000018755
  42. Chen L, Kong X, Wang Z, et al. Pretreatment systemic inflammation response index in patients with breast cancer treated with neoadjuvant chemotherapy as a useful prognostic indicator. Cancer Manag Res. 2020;12:1543–1567. doi: https://doi.org/10.2147/CMAR.S235519
  43. Şahin AB, Cubukcu E, Ocak B, et al. Low pan-immune-inflammation-value predicts better chemotherapy response and survival in breast cancer patients treated with neoadjuvant chemotherapy. Sci Rep. 2021;11(1):14662. doi: https://doi.org/10.1038/s41598-021-94184-7
  44. Jiang C, Zhang S, Qiao K, et al. The pretreatment systemic inflammation response index as a useful prognostic factor is better than lymphocyte to monocyte ratio in breast cancer patients receiving neoadjuvant chemotherapy. Clin Breast Cancer. 2022;22(5):424–438. doi: https://doi.org/10.1016/j.clbc.2022.03.003
  45. Lin F, Zhang LP, Xie SY, et al. Pan-immune-inflammation value: A new prognostic index in operative breast cancer. Front Oncol. 2022;12:830138. doi: https://doi.org/10.3389/fonc.2022.830138
  46. Wang P, Yue W, Li W, et al. Systemic immune-inflammation index and ultrasonographic classification of breast imaging-reporting and data system predict outcomes of triple-negative breast cancer. Cancer Manag Res. 2019;11:813–819. doi: https://doi.org/10.2147/CMAR.S185890
  47. Hu RJ, Liu Q, Ma JY, et al. Preoperative lymphocyte-to-monocyte ratio predicts breast cancer outcome: A meta-analysis. Clin Chim Acta. 2018;484:1–6. doi: https://doi.org/10.1016/j.cca.2018.05.031
  48. Guo W, Lu X, Liu Q, et al. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: An updated meta-analysis of 17079 individuals. Cancer Med. 2019;8(9):4135–4148. doi: https://doi.org/10.1002/cam4.2281
  49. Zhang Y, Sun Y, Zhang Q. Prognostic value of the systemic immune-inflammation index in patients with breast cancer: a meta-analysis. Cancer Cell Int. 2020;20:224. doi: https://doi.org/10.1186/s12935-020-01308-6
  50. Li W, Ma G, Deng Y, et al. Systemic immune-inflammation index is a prognostic factor for breast cancer patients after curative resection. Front Oncol. 2021;11:570208. doi: https://doi.org/10.3389/fonc.2021.570208
  51. Zhu M, Chen L, Kong X, et al. The systemic immune-inflammation index is an independent predictor of survival in breast cancer patients. Cancer Manag Res. 2022;14:775–820. doi: https://doi.org/10.2147/CMAR.S346406
  52. Hua X, Long ZQ, Huang X, et al. The preoperative systemic inflammation response index (SIRI) independently predicts survival in postmenopausal women with breast cancer. Curr Probl Cancer. 2020;44(4):100560. doi: https://doi.org/10.1016/j.currproblcancer.2020.100560
  53. Wang L, Zhou Y, Xia S, et al. Prognostic value of the systemic inflammation response index (SIRI) before and after surgery in operable breast cancer patients. Cancer Biomark. 2020;28(4):537–547. doi: https://doi.org/10.3233/CBM-201682
  54. Dong J, Sun Q, Pan Y, et al. Pretreatment systemic inflammation response index is predictive of pathological complete response in patients with breast cancer receiving neoadjuvant chemotherapy. BMC Cancer. 2021;21(1):700. doi: https://doi.org/10.1186/s12885-021-08458-4
  55. Eren T, Karacin C, Ucar G, et al. Correlation between peripheral blood inflammatory indicators and pathologic complete response to neoadjuvant chemotherapy in locally advanced breast cancer patients. Medicine (Baltimore). 2020;99(22):e20346. doi: https://doi.org/10.1097/MD.0000000000020346
  56. Boér K, Kahán Z, Landherr L, et al. Pathologic complete response rates after neoadjuvant pertuzumab and trastuzumab with chemotherapy in early stage HER2-positive breast cancer — increasing rates of breast conserving surgery: A real-world experience. Pathol Oncol Res. 2021;27:1609785. doi: https://doi.org/10.3389/pore.2021.1609785
  57. Tang L, Shu X, Tu G. Exploring the influencing factors of the pathologic complete response in estrogen receptor-positive, HER2-negative breast cancer after neoadjuvant chemotherapy: a retrospective study. World J Surg Oncol. 2022;20(1):27. doi: https://doi.org/10.1186/s12957-022-02492-7
  58. Li X, Tan Q, Li H, Yang X. Predictive value of pretreatment peripheral neutrophil-to-lymphocyte ratio for response to neoadjuvant chemotherapy and breast cancer prognosis. Cancer Manag Res. 2021;13:5889–5898. doi: https://doi.org/10.2147/CMAR.S313123
  59. Muñoz-Montaño W, Cabrera-Galeana P, Alvarado-Miranda A, et al. Prognostic value of the pretreatment neutrophil-to-lymphocyte ratio in different phenotypes of locally advanced breast cancer during neoadjuvant systemic treatment. Clin Breast Cancer. 2020;20(4):307–316.e1. doi: https://doi.org/10.1016/j.clbc.2019.12.011
  60. Jiang C, Lu Y, Zhang S, et al. Systemic immune-inflammation index is superior to neutrophil to lymphocyte ratio in prognostic assessment of breast cancer patients undergoing neoadjuvant chemotherapy. Biomed Res Int. 2020;2020:7961568. doi: https://doi.org/10.1155/2020/7961568
  61. Cuello-López J, Fidalgo-Zapata A, López-Agudelo L, et al. Platelet-to-lymphocyte ratio as a predictive factor of complete pathologic response to neoadjuvant chemotherapy in breast cancer. PLoS One. 2018;13(11):e0207224. doi: https://doi.org/10.1371/journal.pone.0207224
  62. Kaytaz Tekyol K, Gurleyik G, Aktaş A, et al. Pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: The relationship between inflammatory biomarkers and molecular subtypes. Cureus. 2021;13(4):e14774. doi: https://doi.org/10.7759/cureus.14774
  63. Hu Y, Wang S, Ding N, et al. Platelet/lymphocyte ratio is superior to neutrophil/lymphocyte ratio as a predictor of chemotherapy response and disease-free survival in luminal B-like (HER2-) breast cancer. Clin Breast Cancer. 2020;20(4):e403–e409. doi: https://doi.org/10.1016/j.clbc.2020.01.008
  64. Corbeau I, Thezenas S, Maran-Gonzalez A, et al. Inflammatory blood markers as prognostic and predictive factors in early breast cancer patients receiving neoadjuvant chemotherapy. Cancers (Basel). 2020;12(9):2666. doi: https://doi.org/10.3390/cancers12092666
  65. Kim JY, Jung EJ, Kim JM, et al. Dynamic changes of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio predicts breast cancer prognosis. BMC Cancer. 2020;20(1):1206. doi: https://doi.org/10.1186/s12885-020-07700-9
  66. Meng X, Wang X, Jiang C, et al. Correlation analysis of lymphocyte-monocyte ratio with pathological complete response and clinical prognosis of neoadjuvant chemotherapy in patients with breast cancer. Transl Oncol. 2022;18:101355. doi: https://doi.org/10.1016/j.tranon.2022.101355
  67. Goto W, Kashiwagi S, Asano Y, et al. Predictive value of lymphocyte-to-monocyte ratio in the preoperative setting for progression of patients with breast cancer. BMC Cancer. 2018;18(1):1137. doi: https://doi.org/10.1186/s12885-018-5051-9
  68. Song X, Ma J, Zhang H, et al. Prognostic significance of the primary tumor site and immune indexes in patients with estrogen receptor-positive, human epidermal growth factor receptor-2-negative breast cancer. Gland Surg. 2020;9(5):1450–1468. doi: https://doi.org/10.21037/gs-20-622
  69. Marín Hernández C, Piñero Madrona A, Gil Vázquez PJ, et al. Usefulness of lymphocyte-to-monocyte, neutrophil-to-monocyte and neutrophil-to-lymphocyte ratios as prognostic markers in breast cancer patients treated with neoadjuvant chemotherapy. Clin Transl Oncol. 2018;20(4):476–483. doi: https://doi.org/10.1007/s12094-017-1732-0
  70. Hester RH, Hortobagyi GN, Lim B. Inflammatory breast cancer: early recognition and diagnosis is critical. Am J Obstet Gynecol. 2021;225(4):392–396. doi: https://doi.org/10.1016/j.ajog.2021.04.217
  71. Lim B, Woodward WA, Wang X, et al. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer. 2018;18(8):485–499. doi: https://doi.org/10.1038/s41568-018-0010-y
  72. Van Berckelaer C, Van Geyt M, Linders S, et al. A high neutrophil-lymphocyte ratio and platelet-lymphocyte ratio are associated with a worse outcome in inflammatory breast cancer. Breast. 2020;53:212–220. doi: https://doi.org/10.1016/j.breast.2020.08.006
  73. Al Jarroudi O, El Bairi K, Abda N, et al. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as predictors of outcomes in inflammatory breast cancer. Biomark Med. 2021;15(14):1289–1298. doi: https://doi.org/10.2217/bmm-2020-0717
  74. Takada K, Kashiwagi S, Asano Y, et al. Clinical evaluation of dynamic monitoring of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in primary endocrine therapy for advanced breast cancer. Anticancer Res. 2019;39(10):5581–5588. doi: https://doi.org/10.21873/anticanres.13752
  75. Myojin M, Horimoto Y, Ito M, et al. Neutrophil-to-lymphocyte ratio and histological type might predict clinical responses to eriburin-based treatment in patients with metastatic breast cancer. Breast Cancer. 2020;27(4):732–738. doi: https://doi.org/10.1007/s12282-020-01069-0
  76. Orlandini LF, Pimentel FF, Andrade JM, et al. Obesity and high neutrophil-to-lymphocyte ratio are prognostic factors in non-metastatic breast cancer patients. Braz J Med Biol Res. 2021;54(10):e11409. doi: https://doi.org/10.1590/1414-431X2021e11409
  77. Takamizawa S, Shimoi T, Satomi-Tsushita N, et al. Neutrophil-to-lymphocyte ratio as a prognostic factor for patients with metastatic or recurrent breast cancer treated using capecitabine: a retrospective study. BMC Cancer. 2022;22(1):64. doi: https://doi.org/10.1186/s12885-021-09112-9
  78. Cho U, Park HS, Im SY, et al. Prognostic value of systemic inflammatory markers and development of a nomogram in breast cancer. PLoS One. 2018;13(7):e0200936. doi: https://doi.org/10.1371/journal.pone.0200936
  79. Huszno J, Kolosza Z. Prognostic value of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratio in breast cancer patients. Oncol Lett. 2019;18(6):6275–6283. doi: https://doi.org/10.3892/ol.2019.10966
  80. Wang Y, Huang G, Li Z. Prognostic significance of inflammatory biomarkers in patients with breast cancer skeletal metastases. Cancer Manag Res. 2020;12:11463–11475. doi: https://doi.org/10.2147/CMAR.S277291
  81. Ji H, Xuan Q, Yan C, et al. The prognostic and predictive value of the lymphocyte to monocyte ratio in luminal-type breast cancer patients treated with CEF chemotherapy. Oncotarget. 2016;7(23):34881–34889. doi: https://doi.org/10.18632/oncotarget.8993
  82. Yin Y, Zhang Y, Li L, et al. Prognostic value of pretreatment lymphocyte-to-monocyte ratio and development of a nomogram in breast cancer patients. Front Oncol. 2021;11:650980. doi: https://doi.org/10.3389/fonc.2021.650980
  83. Zhang Z, Lin Q, Chen Y, et al. Prognostic evaluation of metastasis-related lymphocyte/monocyte ratio in stage I-III breast cancer receiving chemotherapy. Front Oncol. 2022;11:782383. doi: https://doi.org/10.3389/fonc.2021.782383
  84. Gerratana L, Basile D, Toffoletto B, et al. Biologically driven cut-off definition of lymphocyte ratios in metastatic breast cancer and association with exosomal subpopulations and prognosis. Sci Rep. 2020;10(1):7010. doi: https://doi.org/10.1038/s41598-020-63291-2
  85. Koh YW, Lee HJ, Ahn JH, et al. Prognostic significance of the ratio of absolute neutrophil to lymphocyte counts for breast cancer patients with ER/PR-positivity and HER2-negativity in neoadjuvant setting. Tumour Biol. 2014;35(10):9823–9830. doi: https://doi.org/10.1007/s13277-014-2282-5
  86. Zenan H, Zixiong L, Zhicheng Y, et al. Clinical prognostic evaluation of immunocytes in different molecular subtypes of breast cancer. J Cell Physiol. 2019;234(11):20584–20602. doi: https://doi.org/10.1002/jcp.28662
  87. Tiainen S, Rilla K, Hämäläinen K, et al. The prognostic and predictive role of the neutrophil-to-lymphocyte ratio and the monocyte-to-lymphocyte ratio in early breast cancer, especially in the HER2+ subtype. Breast Cancer Res Treat. 2021;185(1):63–72. doi: https://doi.org/10.1007/s10549-020-05925-7
  88. Moon G, Noh H, Cho IJ, et al. Prediction of late recurrence in patients with breast cancer: elevated neutrophil to lymphocyte ratio (NLR) at 5 years after diagnosis and late recurrence. Breast Cancer. 2020;27(1):54–61. doi: https://doi.org/10.1007/s12282-019-00994-z
  89. Kim KM, Choi HS, Noh H, et al. Neutrophil to lymphocyte ratio after treatment completion as a potential predictor of survival in patients with triple-negative breast cancer. J Breast Cancer. 2021;24(5):443–454. doi: https://doi.org/10.4048/jbc.2021.24.e43
  90. Dan J, Tan J, Huang J, et al. The dynamic change of neutrophil to lymphocyte ratio is predictive of pathological complete response after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer. 2020;27(5):982–988. doi: https://doi.org/10.1007/s12282-020-01096-x
  91. Zheng Y, Wu C, Yan H, et al. Prognostic value of combined preoperative fibrinogen-albumin ratio and platelet-lymphocyte ratio score in patients with breast cancer: A prognostic nomogram study. Clin Chim Acta. 2020;506:110–121. doi: https://doi.org/10.1016/j.cca.2020.03.011
  92. Polley M-YC, Leon-Ferre RA, Leung S, et al. A clinical calculator to predict disease outcomes in women with triple-negative breast cancer. Breast Cancer Res Treat. 2021;185(3):557–566. doi: https://doi.org/10.1007/s10549-020-06030-5
  93. Hua X, Duan F, Zhai W, et al. A novel inflammatory-nutritional prognostic scoring system for patients with early-stage breast cancer. J Inflamm Res. 2022;15:381–394. doi: https://doi.org/10.2147/JIR.S338421

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».