The Effect of Various Types of Anticoagulant Therapy on the Reduction of Mortality in COVID-19

Cover Page

Cite item

Full Text

Abstract

Coronavirus disease 2019 (COVID-19) is a viral infection that, in severe course, leads to the development of a cytokine storm, systemic inflammatory response and coagulopathy. Unlike other sepsis-associated disseminated intravascular coagulopathy, COVID-19 induced coagulopathy is realized mainly in thrombosis. Researchers around the world are currently developing adequate diagnostic, monitoring and anticoagulant therapy approaches to safely and effectively manage patients with severe COVID-19. The need to develop laboratory monitoring is due to the fact that 20% of patients have changes in hemostasis indicators, while in patients with a severe form of the disease, they are present in 100% of cases. In case of deaths from COVID-19, there is an increase in the concentration of D-dimer and fibrinogen degradation products. Thus, the severity of hemostasis disorders has an important prognostic value. Anticoagulant therapy is included in the list of all recommendations as an effective means of reducing mortality from COVID-19. The questions of the recommended groups and doses of anticoagulant drugs are still open. The approach to the choice of an anticoagulant should be based not only on risk factors, characteristics of the course of the disease, anamnesis, but also on the wishes of the patient during long-term therapy at the post-hospital stage.

About the authors

Alexander D. Makatsariya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966
https://internist.ru/lectors/detail/makatsariya-/

MD, PhD, prof., Academician of the RAS

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Ekaterina V. Slukhanchuk

I.M. Sechenov First Moscow State Medical University (Sechenov University); Petrovsky National Research Center of Surgery

Author for correspondence.
Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-code: 7423-8944

MD, PhD, Assistant Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991; 2 Abrikosovskii per., 119991, Moscow

Victoria O. Bitsadze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859
Scopus Author ID: 6506003478

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Jamilya K. Khizroeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Maria V. Tretyakova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804
SPIN-code: 1463-0065

MD, PhD, Assistant Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Andrei S. Shkoda

L.A. Vorokhobov City Clinical Hospital № 67

Email: a.shkoda@67gkb.ru
ORCID iD: 0000-0002-9783-1796

MD, PhD

Russian Federation, st. Salyama Adilya, 2/44, Moscow

Ismail Elalamy

I.M. Sechenov First Moscow State Medical University (Sechenov University); Department of Thrombosis Center, Tenon University Hospital, Medicine Sorbonne University

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368

MD, PhD, Professor

France, Trubetskaya str. 8-2, 119991, Moscow; Paris

Gian Carlo Di Renzo

I.M. Sechenov First Moscow State Medical University (Sechenov University); University of Perugia

Email: giancarlo.direnzo@unipg.it
ORCID iD: 0000-0002-0293-6385

Professor, Center for Prenatal and Reproductive Medicine

Italy, 8-2, Trubetskaya street, Moscow, 119991; Perugia

Giuseppe Rizzo

I.M. Sechenov First Moscow State Medical University (Sechenov University); Cristo Re Roma

Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353

MD, PhD, Professor, Maternal Fetal Medicine Department of Ospedale

Italy, Moscow; Rome

Natalia V. Pyatigorskaya

I.M. Sechenov First Moscow State Medical University

Email: osipova-mma@list.ru
ORCID iD: 0000-0003-4901-4625
SPIN-code: 8128-1725

PhD in Pharmacology, Professor

Russian Federation, 45, Nakhimovsky prospect, Moscow, 117418

Antonina G. Solopova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: antoninasolopova@yandex.ru
ORCID iD: 0000-0002-7456-2386

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Kristina N. Grigoreva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: grigkristik96@gmail.com
ORCID iD: 0000-0002-7756-8935

ординатор кафедры акушерства и гинекологии клинического института детского здоровья имени Н.Ф. Филатова

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Inga Alexandrovna Nakaidze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ingulia21@yandex.ru

PhD, Student

Russian Federation, 8-2, Trubetskaya street, Moscow, 119991

Diana V. Mitryuk

State Medical and Pharmaceutical University named after Nicolae Testemitanu

Email: diana.mitriuc@gmail.com

Assistant

Moldova, Republic of, Chisinau, bul. Stefan cel Mare, 165

References

  1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: https://doi.org/10.1016/S0140-6736(20)30211-7
  2. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi: https://doi.org/10.1111/jth.14768
  3. Di Minno A, Ambrosino P, Calcaterra I, Di Minno MND (eds). Maintaining Hemostasis and Preventing Thrombosis in COVID-19. Part I: COVID-19 and Venous Thromboembolism: A Meta-analysis of Literature Studies. Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2020.
  4. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350–361. doi: https://doi.org/10.7326/M20-2566
  5. Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–277. doi: https://doi.org/10.7326/M20-2003
  6. Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
  7. Rey JR, Caro-Codón J, Pineda DP, et al. Arterial thrombotic complications in hospitalized patients with COVID-19. Revista Espanola de Cardiologia (English ed.). 2020;73(9):769. doi: https://doi.org/10.1016/j.rec.2020.05.008
  8. Hughes C, Nichols T, Pike M, Subbe C, Elghenzai S. Cerebral venous sinus thrombosis as a presentation of COVID-19. Eur J Case Rep Intern Med. 2020;7(5):001691. doi: https://doi.org/10.12890/2020_001691
  9. Vulliamy P, Jacob S, Davenport RA. Acute aorto‐iliac and mesenteric arterial thromboses as presenting features of COVID‐19. Brit J Haematol. 2020;189(6):1053–1054. doi: https://doi.org/10.1111/bjh.16760
  10. Giacomelli E, Dorigo W, Fargion A, et al. Acute thrombosis of an aortic prosthetic graft in a patient with severe COVID-19 — related pneumonia. Ann Vasc Surg. 2020;66:8–10. doi: https://doi.org/10.1016/j.avsg.2020.04.040
  11. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: https://doi.org/10.1016/S0140-6736(20)30937-5
  12. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. J Thromb Haemost. 2020;18(8):1995–2002. doi: https://doi.org/10.1111/jth.14888
  13. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: https://doi.org/10.1016/j.thromres.2020.04.024
  14. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: https://doi.org/10.1007/s00134-020-06062-x
  15. Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematology. 2020;7(9):e671–e678. doi: https://doi.org/10.1016/S2352-3026(20)30217-9
  16. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3
  17. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: https://doi.org/10.1007/s00134-020-06062-x
  18. Huisman A, Beun R, Sikma M, et al. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS‐CoV‐2. Int J Lab Hematol. 2020;42(5):e211–e212. doi: https://doi.org/10.1111/ijlh.13244
  19. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. doi: https://doi.org/10.1016/j.trsl.2020.04.007
  20. Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Arm. 2019;33(4):869–889. doi: https://doi.org/10.1016/j.idc.2019.07.001
  21. Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135(4):239–251. doi: https://doi.org/10.1182/blood.2019003863
  22. Yen Y-T, Liao F, Hsiao C-H, et al. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006;80(6):2684–2693. doi: https://doi.org/10.1128/JVI.80.6.2684-2693.2006
  23. Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity. 2017;46(1):15–28. doi: https://doi.org/10.1016/j.immuni.2016.12.012
  24. Kobasa D, Jones SM, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007;445(7125):319–323. doi: https://doi.org/10.1038/nature05495
  25. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis — the journey of TF through NETs. Front Immunol. 2012;3:385. doi: https://doi.org/10.3389/fimmu.2012.00385
  26. Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270(8):975–979.
  27. Cao W, Krishnaswamy S, Camire RM, et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Nat Acad Sci USA. 2008;105(21):7416–7421. doi: https://doi.org/10.1073/pnas.0801735105
  28. Hyun J, Kim HK, Kim J-E, et al. Correlation between plasma activity of ADAMTS-13 and coagulopathy, and prognosis in disseminated intravascular coagulation. Thromb Res. 2009;124(1):75–79.
  29. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: https://doi.org/10.1056/NEJMc2007575
  30. Chopard P, Spirk D, Bounameaux H. Identifying acutely ill medical patients requiring thromboprophylaxis. J Thromb Haemost. 2006;4(4):915–916. doi: https://doi.org/10.1111/j.1538-7836.2006.01818.x
  31. Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450–2457. doi: https://doi.org/10.1111/j.1538-7836.2010.04044.x
  32. Gibson CM, Spyropoulos AC, Cohen AT, et al. The IMPROVEDD VTE risk score: incorporation of D-Dimer into the IMPROVE score to improve venous thromboembolism risk stratification. TH Open. 2017;1(1):e56–e65. doi: https://doi.org/10.1055/s-0037-1603929
  33. Rosenberg D, Eichorn A, Alarcon M, et al. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J Am Heart Assoc. 2014;3(6):e001152. doi: https://doi.org/10.1161/JAHA.114.001152
  34. Zhai Z, Li C, Chen Y, et al. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb Haemost. 2020;120(6):937. doi: https://doi.org/10.1055/s-0040-1710019
  35. Schulman S, Hu Y, Konstantinides S. Venous Thromboembolism in COVID-19. Thromb Haemost. 2020;120(12):1642–1653. doi: https://doi.org/10.1055/s-0040-1718532
  36. Klok FA, Kruip M, Van Der Meer N, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041
  37. Klok F, Kruip M, Van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: https://doi.org/10.1016/j.thromres.2020.04.013
  38. Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. J Thromb Haemost. 2020;18(7):1743–1746. doi: https://doi.org/10.1111/jth.14869
  39. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi: https://doi.org/10.1111/jth.14817
  40. Thachil J. The versatile heparin in COVID‐19. J Thromb Haemost. 2020;18(5):1020–1022. doi: https://doi.org/10.1111/jth.14821
  41. Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–124. doi: https://doi.org/10.1016/j.jacc.2020.05.001
  42. Garcia DA, Baglin TP, Weitz JI, Samama MM. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e24S–e43S. doi: https://doi.org/10.1378/chest.11-2291
  43. Quinsey NS, Whisstock JC, Le Bonniec B, et al. Molecular determinants of the mechanism underlying acceleration of the interaction between antithrombin and factor Xa by heparin pentasaccharide. J Biol Chem. 2002;277(18):15971–15978. doi: https://doi.org/10.1074/jbc.M108131200
  44. Vicenzi E, Canducci F, Pinna D, et al. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerging Infectious Diseases. 2004;10(3):413–418. doi: https://doi.org/10.3201/eid1003.030683
  45. Mycroft-West CJ, Su D, Pagani I, et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. bioRxiv. 2020:2020.04.28.066761. doi: https://doi.org/10.1101/2020.04.28.066761
  46. Liu J, Li J, Arnold K, et al. Using heparin molecules to manage COVID‐2019. Res Pract Thromb Haemost. 2020;4(4):518–523. doi: https://doi.org/10.1002/rth2.12353
  47. Belen-Apak FB, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses. 2020:109743. doi: https://doi.org/10.1016/j.mehy.2020.109743
  48. Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med. 2015;4(2):105–115. doi: https://doi.org/10.5492/wjccm.v4.i2.105
  49. Papadaki S, Tselepis AD. Nonhemostatic activities of factor Xa: are there pleiotropic effects of anti-FXa direct oral anticoagulants? Angiology. 2019;70(10):896–907. doi: https://doi.org/10.1177/0003319719840861
  50. Belen-Apak F, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses. 2020;142:109743. doi: https://doi.org/10.1016/j.mehy.2020.109743
  51. Bowles L, Platton S, Yartey N. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med. 2020;383(3):288–290. doi: https://doi.org/10.1056/NEJMc2013656
  52. Vandiver JW, Vondracek TG. Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin. Pharmacotherapy. 2012;32(6):546–558. doi: https://doi.org/10.1002/j.1875-9114.2011.01049.x
  53. Iba T, Di Nisio M, Levy JH, et al. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 2017;7(9):e017046. doi: https://doi.org/10.1136/bmjopen-2017-017046
  54. Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Critical Care Medicine. 2003;31(4):S213–S20. doi: https://doi.org/10.1097/01.CCM.0000057846.21303.AB
  55. Gaertner F, Massberg S. Blood coagulation in immunothrombosis — At the frontline of intravascular immunity. Seminars in Immunology. 2016;28(6):561–569. doi: https://doi.org/10.1016/j.smim.2016.10.010
  56. Li J, Li Y, Yang B, et al. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Int J Clin Exp Med. 2018;11(2):414–422.
  57. Pennathur S, Heinecke JW. Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep. 2007;7(4):257–264. doi: https://doi.org/10.1007/s11892-007-0041-3
  58. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. New England Journal of Medicine. 2020;382(20):e60. doi: https://doi.org/10.1056/NEJMc2009787
  59. Bangalore S, Sharma A, Slotwiner A, et al. ST-segment elevation in patients with Covid-19 — a case series. N Engl J Med. 2020;382(25):2478–2480. doi: https://doi.org/10.1056/NEJMc2009020
  60. Bellosta R, Luzzani L, Natalini G, et al. Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg. 2020;72(6):1864–1872. doi: https://doi.org/10.1016%2Fj.jvs.2020.04.483
  61. Al-Harbi NO, Imam F, Alharbi MM, et al. Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis. 2020;50(2):361–370. doi: https://doi.org/10.1007/s11239-020-02123-6
  62. Billett H, Reyes Gil M, Szymanski J, et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin and Apixaban on Mortality. Heparin and Apixaban on Mortality. 2020. doi: https://doi.org/ http://dx.doi.org/10.2139/ssrn.3679919
  63. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. doi: https://doi.org/10.1016/j.jacc.2020.04.031
  64. Ishibashi Y, Matsui T, Yamagishi S-I. Apixaban exerts anti-inflammatory effects in mesangial cells by blocking thrombin/protease-activated receptor-1 system. Thromb Res. 2014;134(6):1365–1367.
  65. Gavioli EM, Sikorska G, Man A, et al. Current perspectives of anticoagulation in patients with COVID-19. J Cardiovasc Pharmacol. 2020;76(2):146–150. doi: https://doi.org/10.1097/FJC.0000000000000861
  66. Smith K, Krajewski KC, Krajewski Jr MP. Practical considerations in prevention and treatment of venous thromboembolism in hospitalized patients with COVID-19. Am J Health Sys Pharm. 2020;77(21):1739–1745.
  67. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122(6):743–752. doi: https://doi.org/10.1016/j.thromres.2006.10.026
  68. Wenzler E, Engineer MH, Yaqoob M, Benken ST. Safety and Efficacy of Apixaban For Therapeutic Anticoagulation in Critically Ill ICU Patients with Severe COVID-19 Respiratory Disease. TH Open. 2020;4(4):e376–e382. doi: https://doi.org/10.1055/s-0040-1720962
  69. Cohen AT, Davidson BL, Gallus AS, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ. 2006;332(7537):325–329. doi: https://doi.org/10.1136/bmj.38733.466748.7C
  70. Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Design, Development and Therapy. 2014;8:49–65. doi: https://doi.org/10.2147/DDDT.S6762
  71. Gonzalez-Ochoa AJ, Raffetto J, Zavala N, et al. Sulodexide in the treatment of patients with early stages of COVID-19. Randomised Controlled Trial. 2020;121(7):944–954. doi: https://doi.org/10.1055/a-1414-5216
  72. Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–1520. doi: https://doi.org/10.1016/S0140-6736(20)30920-X
  73. De Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112(10):666–677. doi: https://doi.org/10.1160/TH14-02-0126
  74. Koupenova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10(1):1780. doi: https://doi.org/10.1038/s41467-019-09607-x
  75. Xiang B, Zhang G, Guo L, et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun. 2013;4(1):1–12. doi: https://doi.org/10.1038/ncomms3657
  76. Wang L, Li H, Gu X, et al. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11(5):e0154754. doi: https://doi.org/10.1371/journal.pone.0154754
  77. Panka BA, de Grooth H-J, Spoelstra-de Man A, et al. Prevention or treatment of ARDS with aspirin: a review of preclinical models and meta-analysis of clinical studies. Shock. 2017;47(1):13–21. doi: https://doi.org/10.1097/SHK.0000000000000745
  78. Spyropoulos AC, Levy JH, Ageno W, et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID‐19. J Thromb Haemost. 2020;18(8):1859–1865. doi: https://doi.org/10.1111/jth.14929
  79. Lalama JT, Feeney ME, Vandiver JW, et al. Assessing an enoxaparin dosing protocol in morbidly obese patients. J Thromb Thrombolysis. 2015;39(4):516–521. doi: https://doi.org/10.1007/s11239-014-1117-y
  80. Mason SW, Barber A, Jones E, et al. Safety and Efficacy of High-Dose Unfractionated Heparin Versus High-Dose Enoxaparin for Venous Thromboembolism Prevention in Morbidly Obese Hospitalized Patients. Am J Med. 2020;133(6):e249–e259. doi: https://doi.org/10.1016/j.amjmed.2019.12.003
  81. Rondina MT, Wheeler M, Rodgers GM, et al. Weight-based dosing of enoxaparin for VTE prophylaxis in morbidly obese, medically-Ill patients. Thromb Res. 2010;125(3):220–223. doi: https://doi.org/10.1016/j.thromres.2009.02.003
  82. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2240. doi: https://doi.org/10.1182/blood.2020006000
  83. Ludwig KP, Simons HJ, Mone M, Barton RG, Kimball EJ. Implementation of an enoxaparin protocol for venous thromboembolism prophylaxis in obese surgical intensive care unit patients. Annals of Pharmacotherapy. 2011;45(11):1356–1362. doi: https://doi.org/10.1345/aph.1Q313
  84. Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424. doi: https://doi.org/10.1111/jth.14830
  85. Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72–81. doi: https://doi.org/10.1007/s11239-020-02138-z
  86. Efird LE, Kockler DR. Fondaparinux for thromboembolic treatment and prophylaxis of heparin-induced thrombocytopenia. Ann Pharmacother. 2006;40(7–8):1383–1387. doi: https://doi.org/10.1345/aph.1G738
  87. Linkins L-A, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e495S–e530S. doi: https://doi.org/10.1378/chest.11-2303.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».