The Effect of Various Types of Anticoagulant Therapy on the Reduction of Mortality in COVID-19
- Authors: Makatsariya A.D.1, Slukhanchuk E.V.1,2, Bitsadze V.O.1, Khizroeva J.K.1, Tretyakova M.V.1, Shkoda A.S.3, Elalamy I.1,4, Di Renzo G.1,5, Rizzo G.1,6, Pyatigorskaya N.V.7, Solopova A.G.1, Grigoreva K.N.1, Nakaidze I.A.1, Mitryuk D.V.8
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- Petrovsky National Research Center of Surgery
- L.A. Vorokhobov City Clinical Hospital № 67
- Department of Thrombosis Center, Tenon University Hospital, Medicine Sorbonne University
- University of Perugia
- Cristo Re Roma
- I.M. Sechenov First Moscow State Medical University
- State Medical and Pharmaceutical University named after Nicolae Testemitanu
- Issue: Vol 76, No 3 (2021)
- Pages: 268-278
- Section: INFECTIOUS DISEASES: CURRENT ISSUES
- URL: https://journals.rcsi.science/vramn/article/view/125658
- DOI: https://doi.org/10.15690/vramn1551
- ID: 125658
Cite item
Full Text
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection that, in severe course, leads to the development of a cytokine storm, systemic inflammatory response and coagulopathy. Unlike other sepsis-associated disseminated intravascular coagulopathy, COVID-19 induced coagulopathy is realized mainly in thrombosis. Researchers around the world are currently developing adequate diagnostic, monitoring and anticoagulant therapy approaches to safely and effectively manage patients with severe COVID-19. The need to develop laboratory monitoring is due to the fact that 20% of patients have changes in hemostasis indicators, while in patients with a severe form of the disease, they are present in 100% of cases. In case of deaths from COVID-19, there is an increase in the concentration of D-dimer and fibrinogen degradation products. Thus, the severity of hemostasis disorders has an important prognostic value. Anticoagulant therapy is included in the list of all recommendations as an effective means of reducing mortality from COVID-19. The questions of the recommended groups and doses of anticoagulant drugs are still open. The approach to the choice of an anticoagulant should be based not only on risk factors, characteristics of the course of the disease, anamnesis, but also on the wishes of the patient during long-term therapy at the post-hospital stage.
Full Text
##article.viewOnOriginalSite##About the authors
Alexander D. Makatsariya
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966
https://internist.ru/lectors/detail/makatsariya-/
MD, PhD, prof., Academician of the RAS
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Ekaterina V. Slukhanchuk
I.M. Sechenov First Moscow State Medical University (Sechenov University); Petrovsky National Research Center of Surgery
Author for correspondence.
Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-code: 7423-8944
MD, PhD, Assistant Professor
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991; 2 Abrikosovskii per., 119991, MoscowVictoria O. Bitsadze
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859
Scopus Author ID: 6506003478
MD, PhD, Professor
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Jamilya K. Khizroeva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017
MD, PhD, Professor
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Maria V. Tretyakova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804
SPIN-code: 1463-0065
MD, PhD, Assistant Professor
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Andrei S. Shkoda
L.A. Vorokhobov City Clinical Hospital № 67
Email: a.shkoda@67gkb.ru
ORCID iD: 0000-0002-9783-1796
MD, PhD
Russian Federation, st. Salyama Adilya, 2/44, MoscowIsmail Elalamy
I.M. Sechenov First Moscow State Medical University (Sechenov University); Department of Thrombosis Center, Tenon University Hospital, Medicine Sorbonne University
Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368
MD, PhD, Professor
France, Trubetskaya str. 8-2, 119991, Moscow; ParisGian Carlo Di Renzo
I.M. Sechenov First Moscow State Medical University (Sechenov University); University of Perugia
Email: giancarlo.direnzo@unipg.it
ORCID iD: 0000-0002-0293-6385
Professor, Center for Prenatal and Reproductive Medicine
Italy, 8-2, Trubetskaya street, Moscow, 119991; PerugiaGiuseppe Rizzo
I.M. Sechenov First Moscow State Medical University (Sechenov University); Cristo Re Roma
Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353
MD, PhD, Professor, Maternal Fetal Medicine Department of Ospedale
Italy, Moscow; RomeNatalia V. Pyatigorskaya
I.M. Sechenov First Moscow State Medical University
Email: osipova-mma@list.ru
ORCID iD: 0000-0003-4901-4625
SPIN-code: 8128-1725
PhD in Pharmacology, Professor
Russian Federation, 45, Nakhimovsky prospect, Moscow, 117418Antonina G. Solopova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: antoninasolopova@yandex.ru
ORCID iD: 0000-0002-7456-2386
MD, PhD, Professor
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Kristina N. Grigoreva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: grigkristik96@gmail.com
ORCID iD: 0000-0002-7756-8935
ординатор кафедры акушерства и гинекологии клинического института детского здоровья имени Н.Ф. Филатова
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Inga Alexandrovna Nakaidze
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: ingulia21@yandex.ru
PhD, Student
Russian Federation, 8-2, Trubetskaya street, Moscow, 119991Diana V. Mitryuk
State Medical and Pharmaceutical University named after Nicolae Testemitanu
Email: diana.mitriuc@gmail.com
Assistant
Moldova, Republic of, Chisinau, bul. Stefan cel Mare, 165References
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: https://doi.org/10.1016/S0140-6736(20)30211-7
- Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi: https://doi.org/10.1111/jth.14768
- Di Minno A, Ambrosino P, Calcaterra I, Di Minno MND (eds). Maintaining Hemostasis and Preventing Thrombosis in COVID-19. Part I: COVID-19 and Venous Thromboembolism: A Meta-analysis of Literature Studies. Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2020.
- Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350–361. doi: https://doi.org/10.7326/M20-2566
- Wichmann D, Sperhake J-P, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–277. doi: https://doi.org/10.7326/M20-2003
- Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
- Rey JR, Caro-Codón J, Pineda DP, et al. Arterial thrombotic complications in hospitalized patients with COVID-19. Revista Espanola de Cardiologia (English ed.). 2020;73(9):769. doi: https://doi.org/10.1016/j.rec.2020.05.008
- Hughes C, Nichols T, Pike M, Subbe C, Elghenzai S. Cerebral venous sinus thrombosis as a presentation of COVID-19. Eur J Case Rep Intern Med. 2020;7(5):001691. doi: https://doi.org/10.12890/2020_001691
- Vulliamy P, Jacob S, Davenport RA. Acute aorto‐iliac and mesenteric arterial thromboses as presenting features of COVID‐19. Brit J Haematol. 2020;189(6):1053–1054. doi: https://doi.org/10.1111/bjh.16760
- Giacomelli E, Dorigo W, Fargion A, et al. Acute thrombosis of an aortic prosthetic graft in a patient with severe COVID-19 — related pneumonia. Ann Vasc Surg. 2020;66:8–10. doi: https://doi.org/10.1016/j.avsg.2020.04.040
- Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: https://doi.org/10.1016/S0140-6736(20)30937-5
- Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. J Thromb Haemost. 2020;18(8):1995–2002. doi: https://doi.org/10.1111/jth.14888
- Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: https://doi.org/10.1016/j.thromres.2020.04.024
- Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: https://doi.org/10.1007/s00134-020-06062-x
- Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematology. 2020;7(9):e671–e678. doi: https://doi.org/10.1016/S2352-3026(20)30217-9
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3
- Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: https://doi.org/10.1007/s00134-020-06062-x
- Huisman A, Beun R, Sikma M, et al. Involvement of ADAMTS13 and von Willebrand factor in thromboembolic events in patients infected with SARS‐CoV‐2. Int J Lab Hematol. 2020;42(5):e211–e212. doi: https://doi.org/10.1111/ijlh.13244
- Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. doi: https://doi.org/10.1016/j.trsl.2020.04.007
- Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Arm. 2019;33(4):869–889. doi: https://doi.org/10.1016/j.idc.2019.07.001
- Chaturvedi S, Braunstein EM, Yuan X, et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood. 2020;135(4):239–251. doi: https://doi.org/10.1182/blood.2019003863
- Yen Y-T, Liao F, Hsiao C-H, et al. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006;80(6):2684–2693. doi: https://doi.org/10.1128/JVI.80.6.2684-2693.2006
- Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity. 2017;46(1):15–28. doi: https://doi.org/10.1016/j.immuni.2016.12.012
- Kobasa D, Jones SM, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007;445(7125):319–323. doi: https://doi.org/10.1038/nature05495
- Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis — the journey of TF through NETs. Front Immunol. 2012;3:385. doi: https://doi.org/10.3389/fimmu.2012.00385
- Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270(8):975–979.
- Cao W, Krishnaswamy S, Camire RM, et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Nat Acad Sci USA. 2008;105(21):7416–7421. doi: https://doi.org/10.1073/pnas.0801735105
- Hyun J, Kim HK, Kim J-E, et al. Correlation between plasma activity of ADAMTS-13 and coagulopathy, and prognosis in disseminated intravascular coagulation. Thromb Res. 2009;124(1):75–79.
- Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: https://doi.org/10.1056/NEJMc2007575
- Chopard P, Spirk D, Bounameaux H. Identifying acutely ill medical patients requiring thromboprophylaxis. J Thromb Haemost. 2006;4(4):915–916. doi: https://doi.org/10.1111/j.1538-7836.2006.01818.x
- Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450–2457. doi: https://doi.org/10.1111/j.1538-7836.2010.04044.x
- Gibson CM, Spyropoulos AC, Cohen AT, et al. The IMPROVEDD VTE risk score: incorporation of D-Dimer into the IMPROVE score to improve venous thromboembolism risk stratification. TH Open. 2017;1(1):e56–e65. doi: https://doi.org/10.1055/s-0037-1603929
- Rosenberg D, Eichorn A, Alarcon M, et al. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J Am Heart Assoc. 2014;3(6):e001152. doi: https://doi.org/10.1161/JAHA.114.001152
- Zhai Z, Li C, Chen Y, et al. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb Haemost. 2020;120(6):937. doi: https://doi.org/10.1055/s-0040-1710019
- Schulman S, Hu Y, Konstantinides S. Venous Thromboembolism in COVID-19. Thromb Haemost. 2020;120(12):1642–1653. doi: https://doi.org/10.1055/s-0040-1718532
- Klok FA, Kruip M, Van Der Meer N, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041
- Klok F, Kruip M, Van der Meer N, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: https://doi.org/10.1016/j.thromres.2020.04.013
- Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. J Thromb Haemost. 2020;18(7):1743–1746. doi: https://doi.org/10.1111/jth.14869
- Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi: https://doi.org/10.1111/jth.14817
- Thachil J. The versatile heparin in COVID‐19. J Thromb Haemost. 2020;18(5):1020–1022. doi: https://doi.org/10.1111/jth.14821
- Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–124. doi: https://doi.org/10.1016/j.jacc.2020.05.001
- Garcia DA, Baglin TP, Weitz JI, Samama MM. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e24S–e43S. doi: https://doi.org/10.1378/chest.11-2291
- Quinsey NS, Whisstock JC, Le Bonniec B, et al. Molecular determinants of the mechanism underlying acceleration of the interaction between antithrombin and factor Xa by heparin pentasaccharide. J Biol Chem. 2002;277(18):15971–15978. doi: https://doi.org/10.1074/jbc.M108131200
- Vicenzi E, Canducci F, Pinna D, et al. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerging Infectious Diseases. 2004;10(3):413–418. doi: https://doi.org/10.3201/eid1003.030683
- Mycroft-West CJ, Su D, Pagani I, et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. bioRxiv. 2020:2020.04.28.066761. doi: https://doi.org/10.1101/2020.04.28.066761
- Liu J, Li J, Arnold K, et al. Using heparin molecules to manage COVID‐2019. Res Pract Thromb Haemost. 2020;4(4):518–523. doi: https://doi.org/10.1002/rth2.12353
- Belen-Apak FB, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses. 2020:109743. doi: https://doi.org/10.1016/j.mehy.2020.109743
- Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med. 2015;4(2):105–115. doi: https://doi.org/10.5492/wjccm.v4.i2.105
- Papadaki S, Tselepis AD. Nonhemostatic activities of factor Xa: are there pleiotropic effects of anti-FXa direct oral anticoagulants? Angiology. 2019;70(10):896–907. doi: https://doi.org/10.1177/0003319719840861
- Belen-Apak F, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses. 2020;142:109743. doi: https://doi.org/10.1016/j.mehy.2020.109743
- Bowles L, Platton S, Yartey N. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med. 2020;383(3):288–290. doi: https://doi.org/10.1056/NEJMc2013656
- Vandiver JW, Vondracek TG. Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin. Pharmacotherapy. 2012;32(6):546–558. doi: https://doi.org/10.1002/j.1875-9114.2011.01049.x
- Iba T, Di Nisio M, Levy JH, et al. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 2017;7(9):e017046. doi: https://doi.org/10.1136/bmjopen-2017-017046
- Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Critical Care Medicine. 2003;31(4):S213–S20. doi: https://doi.org/10.1097/01.CCM.0000057846.21303.AB
- Gaertner F, Massberg S. Blood coagulation in immunothrombosis — At the frontline of intravascular immunity. Seminars in Immunology. 2016;28(6):561–569. doi: https://doi.org/10.1016/j.smim.2016.10.010
- Li J, Li Y, Yang B, et al. Low-molecular-weight heparin treatment for acute lung injury/acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Int J Clin Exp Med. 2018;11(2):414–422.
- Pennathur S, Heinecke JW. Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep. 2007;7(4):257–264. doi: https://doi.org/10.1007/s11892-007-0041-3
- Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. New England Journal of Medicine. 2020;382(20):e60. doi: https://doi.org/10.1056/NEJMc2009787
- Bangalore S, Sharma A, Slotwiner A, et al. ST-segment elevation in patients with Covid-19 — a case series. N Engl J Med. 2020;382(25):2478–2480. doi: https://doi.org/10.1056/NEJMc2009020
- Bellosta R, Luzzani L, Natalini G, et al. Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg. 2020;72(6):1864–1872. doi: https://doi.org/10.1016%2Fj.jvs.2020.04.483
- Al-Harbi NO, Imam F, Alharbi MM, et al. Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis. 2020;50(2):361–370. doi: https://doi.org/10.1007/s11239-020-02123-6
- Billett H, Reyes Gil M, Szymanski J, et al. Anticoagulation in COVID-19: Effect of Enoxaparin, Heparin and Apixaban on Mortality. Heparin and Apixaban on Mortality. 2020. doi: https://doi.org/ http://dx.doi.org/10.2139/ssrn.3679919
- Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. doi: https://doi.org/10.1016/j.jacc.2020.04.031
- Ishibashi Y, Matsui T, Yamagishi S-I. Apixaban exerts anti-inflammatory effects in mesangial cells by blocking thrombin/protease-activated receptor-1 system. Thromb Res. 2014;134(6):1365–1367.
- Gavioli EM, Sikorska G, Man A, et al. Current perspectives of anticoagulation in patients with COVID-19. J Cardiovasc Pharmacol. 2020;76(2):146–150. doi: https://doi.org/10.1097/FJC.0000000000000861
- Smith K, Krajewski KC, Krajewski Jr MP. Practical considerations in prevention and treatment of venous thromboembolism in hospitalized patients with COVID-19. Am J Health Sys Pharm. 2020;77(21):1739–1745.
- Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122(6):743–752. doi: https://doi.org/10.1016/j.thromres.2006.10.026
- Wenzler E, Engineer MH, Yaqoob M, Benken ST. Safety and Efficacy of Apixaban For Therapeutic Anticoagulation in Critically Ill ICU Patients with Severe COVID-19 Respiratory Disease. TH Open. 2020;4(4):e376–e382. doi: https://doi.org/10.1055/s-0040-1720962
- Cohen AT, Davidson BL, Gallus AS, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ. 2006;332(7537):325–329. doi: https://doi.org/10.1136/bmj.38733.466748.7C
- Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Design, Development and Therapy. 2014;8:49–65. doi: https://doi.org/10.2147/DDDT.S6762
- Gonzalez-Ochoa AJ, Raffetto J, Zavala N, et al. Sulodexide in the treatment of patients with early stages of COVID-19. Randomised Controlled Trial. 2020;121(7):944–954. doi: https://doi.org/10.1055/a-1414-5216
- Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–1520. doi: https://doi.org/10.1016/S0140-6736(20)30920-X
- De Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112(10):666–677. doi: https://doi.org/10.1160/TH14-02-0126
- Koupenova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10(1):1780. doi: https://doi.org/10.1038/s41467-019-09607-x
- Xiang B, Zhang G, Guo L, et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun. 2013;4(1):1–12. doi: https://doi.org/10.1038/ncomms3657
- Wang L, Li H, Gu X, et al. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11(5):e0154754. doi: https://doi.org/10.1371/journal.pone.0154754
- Panka BA, de Grooth H-J, Spoelstra-de Man A, et al. Prevention or treatment of ARDS with aspirin: a review of preclinical models and meta-analysis of clinical studies. Shock. 2017;47(1):13–21. doi: https://doi.org/10.1097/SHK.0000000000000745
- Spyropoulos AC, Levy JH, Ageno W, et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID‐19. J Thromb Haemost. 2020;18(8):1859–1865. doi: https://doi.org/10.1111/jth.14929
- Lalama JT, Feeney ME, Vandiver JW, et al. Assessing an enoxaparin dosing protocol in morbidly obese patients. J Thromb Thrombolysis. 2015;39(4):516–521. doi: https://doi.org/10.1007/s11239-014-1117-y
- Mason SW, Barber A, Jones E, et al. Safety and Efficacy of High-Dose Unfractionated Heparin Versus High-Dose Enoxaparin for Venous Thromboembolism Prevention in Morbidly Obese Hospitalized Patients. Am J Med. 2020;133(6):e249–e259. doi: https://doi.org/10.1016/j.amjmed.2019.12.003
- Rondina MT, Wheeler M, Rodgers GM, et al. Weight-based dosing of enoxaparin for VTE prophylaxis in morbidly obese, medically-Ill patients. Thromb Res. 2010;125(3):220–223. doi: https://doi.org/10.1016/j.thromres.2009.02.003
- Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2240. doi: https://doi.org/10.1182/blood.2020006000
- Ludwig KP, Simons HJ, Mone M, Barton RG, Kimball EJ. Implementation of an enoxaparin protocol for venous thromboembolism prophylaxis in obese surgical intensive care unit patients. Annals of Pharmacotherapy. 2011;45(11):1356–1362. doi: https://doi.org/10.1345/aph.1Q313
- Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424. doi: https://doi.org/10.1111/jth.14830
- Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72–81. doi: https://doi.org/10.1007/s11239-020-02138-z
- Efird LE, Kockler DR. Fondaparinux for thromboembolic treatment and prophylaxis of heparin-induced thrombocytopenia. Ann Pharmacother. 2006;40(7–8):1383–1387. doi: https://doi.org/10.1345/aph.1G738
- Linkins L-A, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: antithrombotic therapy and prevention of thrombosis: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e495S–e530S. doi: https://doi.org/10.1378/chest.11-2303.
Supplementary files
