Role of Dendritic Cells in the Rheumatic Diseases Pathogenesis: Review


如何引用文章

全文:

详细

Dendritic cells (DCs) are professional antigen presenting cells that can as stimulate immune response as suppress immune inflamma tion. Recently the role of DCs in the pathogenesis of autoimmune diseases and the possibility of their application as diagnostic markers and methods of treatment has been studied more and more. It was shown that subpopulations DCs play different role in pathogenesis various autoimmune diseases. Thus, pathogenesis of rheumatoid arthritis and ankylosing spondylitis is associated with activity of myeloid DCs and their possibility to present arthritogenic peptides to T-cells. While plasmocytoid DCs are more important in pathogenesis systemic lupus erythematosus and systemic sclerosis. The review presents the results of the latest registered clinical trials about applications DCs in different autoimmune diseases as well as current ideas about functional features DCs during autoimmune diseases. The existing data confirm their possible use as well as the safety of DC in treatment.

作者简介

Yuliya Kurochkina

Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Siberian Division of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: juli_k@bk.ru
ORCID iD: 0000-0002-7080-777X
SPIN 代码: 4897-2330

MD, PhD

俄罗斯联邦, 6, Arbuzova str., Novosibirsk, 630117

Maxim Korolev

Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Siberian Division of the Russian Academy of Sciences

Email: kormax@bk.ru
ORCID iD: 0000-0002-4890-0847
SPIN 代码: 5494-7355

MD, PhD

俄罗斯联邦, 6, Arbuzova str., Novosibirsk, 630117

参考

  1. Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol. 2007;7(1):19–30. doi: https://doi.org/10.1038/nri1996
  2. Langerhans P. Ueber die Nerven der menschlichen Haut. Archiv f Pathol Anat. 1868;44(2–3):325–337. doi: https://doi.org/10.1007/BF01959006
  3. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142–1162.
  4. Merad M, Sathe P, Helft J, et al. The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annu Rev Immunol. 2013;31(1):563–604. doi: https://doi.org/10.1146/annurev-immunol-020711-074950
  5. Satpathy AT, Wu X, Albring JC, Murphy KM. Re(de)fining the dendritic cell lineage. Nat Immunol. 2012;13(12):1145–1154. doi: https://doi.org/10.1038/ni.2467
  6. Cheong C, Matos I, Choi J-H, et al. Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209+ Dendritic Cells for Immune T Cell Areas. Cell. 2010;143(3):416–429. doi: https://doi.org/10.1016/j.cell.2010.09.039
  7. Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol. 2019;10:1088. doi: https://doi.org/10.3389/fimmu.2019.01088
  8. Mbongue J, Nicholas D, Firek A, Langridge W. The Role of Dendritic Cells in Tissue-Specific Autoimmunity. J Immunol Res. 2014;2014:857143. doi: https://doi.org/10.1155/2014/857143
  9. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23(1):975–1028. doi: https://doi.org/10.1146/annurev.immunol.22.012703.104538
  10. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106(3):255–258. doi: https://doi.org/10.1016/s0092-8674(01)00449-4
  11. Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol. 2008;38(10):2776–2783. doi: https://doi.org/10.1002/eji.200838659
  12. Naranjo-Gómez M, Raïch-Regué D, Oñate C, et al. Comparative study of clinical grade human tolerogenic dendritic cells. J Transl Med. 2011;9(1):89. doi: https://doi.org/10.1186/1479-5876-9-89
  13. Mellor A. Indoleamine 2,3 dioxygenase and regulation of T cell immunity. Biochem Biophys Res Commun. 2005;338(1):20–24. doi: https://doi.org/10.1016/j.bbrc.2005.08.232
  14. Terness P, Bauer TM, Röse L, et al. Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase-expressing Dendritic Cells. J Exp Med. 2002;196(4):447–457. doi: https://doi.org/10.1084/jem.20020052
  15. Maldonado RA, von Andrian UH. How Tolerogenic Dendritic Cells Induce Regulatory T Cells. Advances in Immunology. Alt FW, Austen KF, Honjo T, et al., eds. Academic Press; 2010. Р. 111–65. doi: https://doi.org/10.1016/B978-0-12-380995-7.00004-5
  16. Cassani B, Villablanca EJ, De Calisto J, et al. Vitamin A and immune regulation: Role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med. 2012;33(1):63–76. doi: https://doi.org/10.1016/j.mam.2011.11.001
  17. Zubizarreta I, Flórez-Grau G, Vila G, et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc Natl Acad Sci. 2019;116(17):8463–8470. doi: https://doi.org/10.1073/pnas.1820039116
  18. Nikolic T, Zwaginga JJ, Uitbeijerse BS, et al. Safety and feasibility of intradermal injection with tolerogenic dendritic cells pulsed with proinsulin peptide — for type 1 diabetes. Lancet Diabetes Endocrinol. 2020;8(6):470–472. doi: https://doi.org/10.1016/S2213-8587(20)30104-2
  19. Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis. 2019;78(3):297–310. doi: https://doi.org/10.1136/annrheumdis-2018-214024
  20. Cauwels A, Tavernier J. Tolerizing Strategies for the Treatment of Autoimmune Diseases: From ex vivo to in vivo Strategies. Front Immunol. 2020;11:674. doi: https://doi.org/10.3389/fimmu.2020.00674
  21. Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol. 2021;12:633436. doi: https://doi.org/10.3389/fimmu.2021.633436
  22. Riazifar M, Mohammadi MR, Pone EJ, et al. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano. 2019;13(6):6670–6688. doi: https://doi.org/10.1021/acsnano.9b01004
  23. Luque-Campos N, Contreras-López RA, Jose Paredes-Martínez M, et al. Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response. Front Immunol. 2019;10:798. doi: https://doi.org/10.3389/fimmu.2019.00798
  24. Chen Y, Yu Q, Hu Y, Shi Y. Current Research and Use of Mesenchymal Stem Cells in the Therapy of Autoimmune Diseases. Curr Stem Cell Res Ther. 2019;14(7):579–582. doi: https://doi.org/10.2174/1574888X14666190429141421
  25. Fischer UM, Harting MT, Jimenez F, et al. Pulmonary Passage is a Major Obstacle for Intravenous Stem Cell Delivery: The Pulmonary First-Pass Effect. Stem Cells Dev. 2009;18(5):683–692. doi: https://doi.org/10.1089/scd.2008.0253
  26. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373(9664):659–672. doi: https://doi.org/10.1016/S0140-6736(09)60008-8
  27. Moret FM, Hack CE, van der Wurff-Jacobs KM, et al. Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T cell-attracting chemokines and spontaneously induce Th1, Th17 and Th2 cell activity. Arthritis Res Ther. 2013;15(5):R155. doi: https://doi.org/10.1186/ar4338
  28. Kavousanaki M, Makrigiannakis A, Boumpas D, Verginis P. Novel role of plasmacytoid dendritic cells in humans: Induction of interleukin-10–producing treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding to therapy. Arthritis Rheum. 2010;62(1):53–63. doi: https://doi.org/10.1002/art.25037
  29. Lande R, Giacomini E, Serafini B, et al. Characterization and Recruitment of Plasmacytoid Dendritic Cells in Synovial Fluid and Tissue of Patients with Chronic Inflammatory Arthritis. J Immunol. 2004;173(4):2815–2824. doi: https://doi.org/10.4049/jimmunol.173.4.2815
  30. Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные // Научно-практическая ревматология. — 2019. — Т. 55. — № 4. — С. 452–461. [Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type i interferon: new evidence. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(4):452–461. (In Russ.)] doi: https://doi.org/10.14412/1995-4484-2019-452-461
  31. Thurlings RM, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62(12):3607–3614. doi: https://doi.org/10.1002/art.27702
  32. Raterman HG, Vosslamber S, de Ridder S, et al. Interferon type I signature may predict non response upon rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14(2):R95. doi: https://doi.org/10.1186/ar3819
  33. Ramwadhdoebe TH, Ramos MI, Maijer KI, et al. Myeloid Dendritic Cells Are Enriched in Lymph Node Tissue of Early Rheumatoid Arthritis Patients but not in At Risk Individuals. Cells. 2019;8(7):756. doi: https://doi.org/10.3390/cells8070756
  34. Королев М.А., Курочкина Ю.Д., Банщикова Н.Е., и др. Особенности субпопуляционного состава дендритных клеток у больных ревматоидным артритом // Современная ревматология. — 2019. — Т. 13. — № 3. — С. 39–44. [Korolev MA, Kurochkina YD, Banshchikova NE, et al. Features of the subpopulation composition of dendritic cells in patients with rheumatoid arthritis. Sovremennaya Revmatologiya = Modern Rheumatology Journal. 2019;13(3):39–44. (In Russ.)] doi: https://doi.org/10/14412/1996-7012-2019-3-39-44
  35. Cooles FAH, Anderson AE, Skelton A, et al. Phenotypic and Transcriptomic Analysis of Peripheral Blood Plasmacytoid and Conventional Dendritic Cells in Early Drug Naïve Rheumatoid Arthritis. Front Immunol. 2018;9:755. doi: https://doi.org/10.3389/fimmu.2018.00755
  36. Santiago-Schwarz F, Anand P, Liu S, Carsons SE. Dendritic Cells (DCs) in Rheumatoid Arthritis (RA): Progenitor Cells and Soluble Factors Contained in RA Synovial Fluid Yield a Subset of Myeloid DCs That Preferentially Activate Th1 Inflammatory-Type Responses. J Immunol. 2001;167(3):1758–1768. doi: https://doi.org/10.4049/jimmunol.167.3.1758
  37. Derksen VFAM, Huizinga TWJ, van der Woude D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol. 2017;39(4):437–446. doi: https://doi.org/10.1007/s00281-017-0627-z
  38. Verheul MK, Böhringer S, Delft MAM, et al. Triple Positivity for Anti-Citrullinated Protein Autoantibodies, Rheumatoid Factor, and Anti-Carbamylated Protein Antibodies Conferring High Specificity for Rheumatoid Arthritis. Arthritis Rheumatol. 2018;70(11):1721–1731. doi: https://doi.org/10.1002/art.40562
  39. Savvateeva E, Smoldovskaya O, Feyzkhanova G, Rubina A. Multiple biomarker approach for the diagnosis and therapy of rheumatoid arthritis. Crit Rev Clin Lab Sci. 2021;58(1):17–28. doi: https://doi.org/10.1080/10408363.2020.1775545
  40. Grassia G, MacRitchie N, Platt AM, et al. Plasmacytoid dendritic cells: Biomarkers or potential therapeutic targets in atherosclerosis? Pharmacol Ther. 2013;137(2):172–182. doi: https://doi.org/10.1016/j.pharmthera.2012.10.001
  41. Фалалеева С.А., Курилин В.В., Шкаруба Н.С., и др. Характеристика подтипов дендритных клеток периферической крови у больных ревматоидным артритом // Медицинская иммунология. — 2013. — Т. 15. — № 4. — С. 343–350. [Falaleeva SA, Kurilin VV., Shkaruba NS, et al. Subtype characterics of dendritic cells from peripheral blood of patients with rheumatoid arthritis. Medical Immunology (Russia). 2014;15(4):343–350. (In Russ.)] doi: https://doi.org/10.15789/1563-0625-2013-4-343-350
  42. Arkema EV, Jonsson J, Baecklund E, et al. Are patients with rheumatoid arthritis still at an increased risk of tuberculosis and what is the role of biological treatments? Ann Rheum Dis. 2015;74(6):1212–7121. doi: https://doi.org/10.1136/annrheumdis-2013-204960
  43. Насонов Е.Л., Олюнин Ю.А., Лила А.М. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии // Научно-практическая ревматология. — 2018. — Т. 56. — № 3. — С. 263–271. [Nasonov EL, Olyunin YA, Lila AM. Rheumatoid arthritis: the problems of remission and therapy resistance. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(3):263–271. (In Russ.)] doi: https://doi.org/10.14412/1995-4484-2018-263-271
  44. Schett G, Emery P, Tanaka Y, et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann Rheum Dis. 2016;75(8):1428–1437. doi: https://doi.org/10.1136/annrheumdis-2016-209201
  45. Stoop JN, Harry RA, von Delwig A, et al. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum. 2010;62(12):3656–3665. doi: https://doi.org/10.1002/art.27756
  46. García-González P, Morales R, Hoyos L, et al. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines. J Transl Med. 2013;11(1):128. doi: https://doi.org/10.1186/1479-5876-11-128
  47. Benham H, Nel HJ, Law SC, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype–positive rheumatoid arthritis patients. Sci Transl Med. 2015;7(290):290ra87. doi: https://doi.org/10.1126/scitranslmed.aaa9301
  48. Bell GM, Anderson AE, Diboll J, et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017;76(1):227–234. doi: https://doi.org/10.1136/annrheumdis-2015-208456
  49. Brewerton DA, Hart FD, Nicholls A, et al. Ankylosing spondylitis and HL-A 27. Lancet. 1973;301(7809):904–907. doi: https://doi.org/10.1016/s0140-6736(73)91360-3
  50. Faham M, Carlton V, Moorhead M, et al. Discovery of T Cell Receptor β Motifs Specific to HLA-B27-Positive Ankylosing Spondylitis by Deep Repertoire Sequence Analysis. Arthritis Rheumatol. 2017;69(4):774–784. doi: https://doi.org/10.1002/art.40028
  51. Ranganathan V, Gracey E, Brown MA, et al. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat Rev Rheumatol. 2017;13(6):359–367. doi: https://doi.org/10.1038/nrrheum.2017.56
  52. Paine A, Ritchlin CT. Targeting the interleukin-23/17 axis in axial spondyloarthritis. Curr Opin Rheumatol. 2016;28(4):359–367. doi: https://doi.org/10.1097/BOR.0000000000000301
  53. Appel H, Maier R, Wu P, et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13(3):R95. doi: https://doi.org/10.1186/ar3370
  54. Babaie F, Hasankhani M, Mohammadi H, et al. The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: New insights and updates. Immunol Lett. 2018;196:52–62. doi: https://doi.org/10.1016/j.imlet.2018.01.014
  55. Wright PB, McEntegart A, McCarey D, et al. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation. Rheumatology. 2016;55(1):120–132. doi: https://doi.org/10.1093/rheumatology/kev245
  56. Talpin A, Costantino F, Bonilla N, et al. Monocyte-derived dendritic cells from HLA-B27+ axial spondyloarthritis (SpA) patients display altered functional capacity and deregulated gene expression. Arthritis Res Ther. 2014;16(4):417. doi: https://doi.org/10.1186/s13075-014-0417-0
  57. Pang L, Wang L, Suo T, et al. Tumor Necrosis Factor-α Blockade Leads to Decreased Peripheral T Cell Reactivity and Increased Dendritic Cell Number in Peripheral Blood of Patients with Ankylosing Spondylitis. J Rheumatol. 2008;35(11):2220–2228. doi: https://doi.org/10.3899/jrheum.080219
  58. Bertolini TB, Biswas M, Terhorst C, et al. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell Immunol. 2021;359:104251. doi: https://doi.org/10.1016/j.cellimm.2020.104251
  59. Liu G, Hao Y, Yang Q, Deng S. The Association of Fecal Microbiota in Ankylosing Spondylitis Cases with C-Reactive Protein and Erythrocyte Sedimentation Rate. Mediators Inflamm. 2020;2020: 8884324. doi: https://doi.org/10.1155/2020/8884324
  60. Системная красная волчанка // Ревматология: Российские клинические рекомендации / под ред. Е.Л. Насонова. М.: ГЭОТАР-Медиа; 2017. С. 113–141. [Sistemnaya krasnaya volchanka. Revmatologiya: Russian clinical guidelines. Nasonov EL, ed. Moscow: GEOTAR-Media; 2017. Р. 113–141. (In Russ.)]
  61. Santiago-Raber M-L, Baccala R, Haraldsson KM, et al. Type-I Interferon Receptor Deficiency Reduces Lupus-like Disease in NZB Mice. J Exp Med. 2003;197(6):777–788. doi: https://doi.org/10.1084/jem.20021996.
  62. Jørgensen TN, Roper E, Thurman JM, et al. Type I interferon signaling is involved in the spontaneous development of lupus-like disease in B6.Nba2 and (B6.Nba2 × NZW)F1 mice. Genes Immun. 2007;8(8):653–662. doi: https://doi.org/10.1038/sj.gene.6364430
  63. Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an Anti-Interferon-α Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017;69(2):376–386. doi: https://doi.org/10.1002/art.39962
  64. Casey KA, Guo X, Smith MA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018;5(1):e000286. doi: https://doi.org/10.1136/lupus-2018-000286
  65. Соловьев С.К., Асеева Е.А., Попкова Т.В., и др. Системная красная волчанка: новые горизонты диагностики и терапии // Научно-практическая ревматология. — 2020. — Т. 58. — № 1. — С. 5–14. [Solovyev SK, Aseeva EA, Popkova TV, et al. Systemic lupus erythematosus: new horizons for diagnosis and therapy. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(1):5–14. (In Russ.)] doi: https://doi.org/10.14412/1995-4484-2020-5-14
  66. Rönnblom L, Alm GV. A Pivotal Role for the Natural Interferon α-producing Cells (Plasmacytoid Dendritic Cells) in the Pathogenesis of Lupus. J Exp Med. 2001;194(12):F59–F64. doi: https://doi.org/10.1084/jem.194.12.f59
  67. Blomberg S, Eloranta ML, Cederblad B, et al. Presence of cutaneous interferon-a producing cells in patients with systemic lupus erythematosus. Lupus. 2001;10(7):484–490. doi: https://doi.org/10.1191/096120301678416042
  68. Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115(2):407–417. doi: https://doi.org/10.1172/JCI23025
  69. Lepelletier Y, Zollinger R, Ghirelli C, et al. Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid predendritic cells (pDCs). Blood. 2010;116(18):3389–3397. doi: https://doi.org/10.1182/blood-2010-05-282913
  70. Carreño LJ, Pacheco R, Gutierrez MA, et al. Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fcγ receptors and costimulatory molecules on dendritic cells. Immunology. 2009;128(3):334–341. doi: https://doi.org/10.1111/j.1365-2567.2009.03138.x
  71. Funes SC, Ríos M, Gómez-Santander F, et al. Tolerogenic dendritic cell transfer ameliorates systemic lupus erythematosus in mice. Immunology. 2019;158(4):322–339. doi: https://doi.org/10.1111/imm.13119
  72. Obreque J, Vega F, Torres A, et al. Autologous tolerogenic dendritic cells derived from monocytes of systemic lupus erythematosus patients and healthy donors show a stable and immunosuppressive phenotype. Immunology. 2017;152(4):648–659. doi: https://doi.org/10.1111/imm.12806
  73. Ah Kioon MD, Tripodo C, Fernandez D, et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med. 2018;10(423):eaam8458. doi: https://doi.org/10.1126/scitranslmed.aam8458
  74. Volkmann ER, Tashkin DP, Roth MD, et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res Ther. 2016;18(1):305. doi: https://doi.org/10.1186/s13075-016-1203-y
  75. Mehta H, Goulet P-O, Nguyen V, et al. Topoisomerase I peptide-loaded dendritic cells induce autoantibody response as well as skin and lung fibrosis. Autoimmunity. 2016;49(8):503–513. doi: https://doi.org/10.1080/08916934.2016.1230848
  76. Kafaja S, Valera I, Divekar AA, et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight. 2018;3(9):e98380. doi: https://doi.org/10.1172/jci.insight.98380
  77. Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis. Cell Biol Int. 2017;41(9):991–1000. doi: https://doi.org/10.1002/cbin.10800
  78. Ананьева Л.П., Тюрин И.Е., Конева О.А., и др. Интерстициальные заболевания легких при системном прогрессирующем склерозе (системной склеродермии) // Современная ревматология. — 2021. — Т. 15. — Прил. 1. — С. 1–62. [Ananyeva LP, Tyurin IE, Koneva OA, et al. Interstitial lung disease in systemic sclerosis (systemic scleroderma). Modern Rheumatology Journal. 2021;15(1S):1–62. (In Russ.)] doi: https://doi.org/10.14412/1996-7012-2021-1S-1-62
  79. Ананьева ЛП. Интерстициальное поражение легких, ассоциированное с системной склеродермией (прогрессирующим системным склерозом) // Научно-практическая ревматология. — 2017. — Т. 55. — № 1. — С. 87–95. [Ananyeva LP. Interstitial lung disease associated with systemic sclerosis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(1):87–95. (In Russ.)] doi: https://doi.org/10.14412/1995-4484-2017-87-95
  80. Fancke B, Suter M, Hochrein H, O’Keeffe M. M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood. 2008;111(1):150–159. doi: https://doi.org/10.1182/blood-2007-05-089292
  81. Khanna D, Saggar R, Mayes MD, et al. A one-year, phase I/IIa, open-label pilot trial of imatinib mesylate in the treatment of systemic sclerosis-associated active interstitial lung disease. Arthritis Rheum. 2011;63(11):3540–3546. doi: https://doi.org/10.1002/art.30548

补充文件

附件文件
动作
1. JATS XML

版权所有 © "Paediatrician" Publishers LLC, 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».