The Short Chain Free Fatty Acids and Their Receptors in the Microbiotic Concept for Asthma Development

Cover Page

Cite item

Full Text

Abstract

Asthma is a chronic, heterogeneous inflammatory disease with a high variability of the flow caused by the trigger influence of genetic and environmental factors. The heterogeneity of asthma indicates the involvement of many components in the mechanism of the inflammation of the respiratory tract. Currently, the microbiotic concept of the pathogenesis of respiratory system diseases is studied, based on the existence of a bilateral relationship between the microflora lungs and the intestines. The key mechanism of these relationships is free fatty acids performing signal and regulatory functions in the body. The medium-chain and long-chain free fatty acids are synthesized by de novo or enter the body as a result of consumption of fats, while the short-chain free fatty acids are formed in the intestine as a result of partial digestion of soluble fibre. The mechanism connecting the free fatty acids and inflammatory reactions includes activation of their receptors (Free Fatty Acid Receptor, FFAR) expressed on the cells of the gastrointestinal and respiratory tract, as well as on immune cells. If the role of the medium-chain and long-chain fatty acids receptors (FFAR1, FFAR4) and their ligands in the pathogenesis of asthma is actively studied, the value of the short-chain receptors (FFAR2, FFAR3) only begins to attract the attention of researchers in connection with the emergence of numerous data on the interconnection of the respiratory microbiome paths and intestines and its possible role in the induction of broncho-pulmonary complications. This review includes modern knowledge of the microbiotic concept of asthma, the basic information about the nomenclature, metabolism and transport of the free fatty acids, the value of the individual classes of the free fatty acids in the regulation of immune processes is normal and at bronchopulmonary pathology. The latest data of the FFAR receptors are systematized, features of their activation and expression, the intended role of FFAR2 and FFAR3 in the development and asthma therapy. It is discussed that gastrointestinal microbiota correction can reduce the activity of chronic inflammation of the respiratory tract at asthma.

About the authors

Oksana Y. Kytikova

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-code: 3006-5614

MD, PhD

Russian Federation, 22 Kalinina str., 675000, Blagoveschensk

Yuliya K. Denisenko

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-code: 4997-3432

PhD in Biology

Russian Federation, 22 Kalinina str., 675000, Blagoveschensk

Tatyana P. Novgorodtseva

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-code: 5888-6099

PhD in Biology, Professor

Russian Federation, 22 Kalinina str., 675000, Blagoveschensk

Marina V. Antonyuk

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: antonyukm@mail.ru
ORCID iD: 0000-0002-2492-3198
SPIN-code: 3446-4852

MD, PhD, Professor

Russian Federation, 22 Kalinina str., 675000, Blagoveschensk

Tatyana A. Gvozdenko

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Author for correspondence.
Email: vfdnz@mail.ru
ORCID iD: 0000-0002-6413-9840
SPIN-code: 7869-1692

MD, PhD, Professor

Russian Federation, 22 Kalinina str., 675000, Blagoveschensk

References

  1. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2019). Available from: http://ginasthma.com
  2. Novakova P, Tiotiu A, Baiardini I, et al. Allergen immunotherapy in asthma: current evidence. J Asthma. 2021;58(2):223–230. doi: https://doi.org/10.1080/02770903.2019.1684517
  3. Delgado J, Dávila IJ, Domínguez-Ortega J. Severe Asthma Group (SEAIC). Clinical Recommendations for the Management of Biological Treatments in Severe Asthma Patients: A Consensus Statement. J Investig Allergol Clin Immunol. 2021;31(1):36–43. doi: https://doi.org/10.18176/jiaci.0638
  4. Monga N, Sethi GS, Kondepudi KK, et al. Lipid mediators and asthma: Scope of therapeutics. Biochem Pharmacol. 2020;179:113925. doi: https://doi.org/10.1016/j.bcp.2020.113925
  5. Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci. 2020;21(24):9580. doi: https://doi.org/10.3390/ijms21249580
  6. Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., и др. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы // Ожирение и метаболизм. — 2018. — Т. 15. — № 4. — С. 9–14. [Kytikova OJu, Antonjuk MV, Gvozdenko TA, i dr. Metabolicheskie aspekty vzaimosvjazi ozhirenija i bronhial’noj astmy. Ozhirenie i metabolizm. 2018;15(4):9–14. (In Russ.)] doi: https://doi.org/10.14341/OMET9578
  7. Kim JS, Steffen BT, Podolanczuk AJ, et al. Associations of ω-3 Fatty Acids with Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults. Am J Epidemiol. 2021;190(1):95–108. doi: https://doi.org/10.1093/aje/kwaa168
  8. Kimura I, Ichimura A, Ohue-Kitano R, et al. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2020;100(1):171–210. doi: https://doi.org/10.1152/physrev.00041.2018
  9. Zhang L, Hames KC, Jensen MD. Regulation of direct adipose tissue free fatty acid storage during mixed meal ingestion and high free fatty acid concentration conditions. Am J Physiol Endocrinol Metab. 2021;320(2):E208–E218. doi: https://doi.org/10.1152/ajpendo.00408.2020
  10. Grundmann M, Bender E, Schamberger J, et al. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci. 2021;22(4):1763. doi: https://doi.org/10.3390/ijms22041763
  11. Jakubíк J, Randáková A, Chetverikov N, et al. The operational model of allosteric modulation of pharmacological agonism. Sci Rep. 2020;10(1):14421. doi: https://doi.org/10.1038/s41598-020-71228-y
  12. Haak AJ, Ducharme MT, Diaz Espinosa AM, et al. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci. 2020;41(3):172–182. doi: https://doi.org/10.1016/j.tips.2019.12.008
  13. Gusach A, Maslov I, Luginina A, et al. Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol. 2020;63:18–25. doi: https://doi.org/10.1016/j.sbi.2020.03.004
  14. Xu S, Schwab A, Karmacharya N, et al. FFAR1 activation attenuates histamine-induced myosin light chain phosphorylation and cortical tension development in human airway smooth muscle cells. Respir Res. 2020;21(1):317. doi: https://doi.org/10.1186/s12931-020-01584-w
  15. Rutting S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L157–L174. doi: https://doi.org/10.1152/ajplung.00306.2018
  16. Hu Y, Kang Y, Liu X, et al. Distinct lung microbial community states in patients with pulmonary tuberculosis. Sci China Life Sci. 2020;63(10):1522–1533. doi: https://doi.org/10.1007/s11427-019-1614-0
  17. Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020:11(4):1030–1042. doi: https://doi.org/10.1080/19490976.2020.1737487
  18. Ekanayake A, Madegedara D, Chandrasekharan V, et al. Respiratory Bacterial Microbiota and Individual Bacterial Variability in Lung Cancer and Bronchiectasis Patients. Indian J Microbiol. 2020;60(2):196–205. doi: https://doi.org/10.1007/s12088-019-00850-w
  19. Cuthbertson L, Walker AW, Oliver AE, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8(1):45. doi: https://doi.org/10.1186/s40168-020-00810-3
  20. Dickson RP, Harari S, Kolb M. Making the case for causality: what role do lung microbiota play in idiopathic pulmonary fibrosis? Eur Respir J. 2020;55(4):2000318. doi: https://doi.org/10.1183/13993003.00318-2020
  21. Durack J, Christian LS, Nariya S, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020;146(5):1016–1026. doi: https://doi.org/10.1016/j.jaci.2020.03.028
  22. Fu X, Li Y, Meng Y, et al. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. Indoor Air. 2020:30(5);816–826. doi: https://doi.org/10.1111/ina.12677
  23. Proctor L. What’s next for the human microbiome? Nature. 2019; 569(7758):623–625. doi: https://doi.org/10.1038/d41586-019-01654-0
  24. Enaud R, Prevel R, Ciarlo E, et al. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020;10:9. doi: https://doi.org/10.3389/fcimb.2020.00009
  25. Arrieta M-C, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424–434.e10. doi: https://doi.org/0.1016/j.jaci.2017.08.041
  26. Skalski JH, Limon JJ, Sharma P, et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog. 2018;14(9):e1007260. doi: https://doi.org/10.1371/journal.ppat.1007260
  27. Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity. 2019;51(2):285–297.e5. doi: https://doi.org/10.1016/j.immuni.2019.06.002
  28. Barcik W, Boutin RCT, Sokolowska M, et al. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241–255. doi: https://doi.org/10.1016/j.immuni.2020.01.007
  29. Du X, Wei J, Tian D, et al. miR-182-5p contributes to intestinal injury in a murine model of Staphylococcus aureus pneumonia-induced sepsis via targeting surfactant protein D. J Cell Physiol. 2019;235(1):563–572. doi: https://doi.org/10.1002/jcp.28995
  30. Sallustio F, Curci C, Stasi A, et al. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int. 2019;6795845. doi: https://doi.org/10.1155/2019/6795845
  31. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. doi: https://doi.org/10.1080/15548627.2019.1635384
  32. Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17(5):263–278. doi: https://doi.org/10.1038/s41575-019-0261-4
  33. Kytikova OY, Perelman JM, Novgorodtseva TP, et al. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res. 2020;2020:8906968. doi: https://doi.org/10.1155/2020/8906968
  34. Sender R, Fuchs S, Milo R, et al. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016; 14(8):e1002533. doi: https://doi.org/10.1371/journal.pbio.1002533
  35. Sundström K, Mishra PP, Pyysalo MJ, et al. Similarity of salivary microbiome in parents and adult children. PeerJ. 2020;8:e8799. doi: https://doi.org/10.7717/peerj.8799
  36. Villette R, Kc P, Beliard S, et al. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol. 2020;11:278. doi: https://doi.org/10.3389/fphar.2020.00278
  37. Otto M. Staphylococci in the human microbiome: the role of host and interbacterial interactions. Curr Opin Microbiol. 2020;53:71–77. doi: https://doi.org/10.1016/j.mib.2020.03.003
  38. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39–49. doi: https://doi.org/10.1002/eji.201646721
  39. Vandenborght LE, Enaud R, Coron N, et al. From culturomics to metagenomics: the mycobiome in chronic respiratory diseases. The Lung Microbiome (Norwich: European Respiratory Society). 2019;88–118. doi: https://doi.org/10.1183/2312508X.10015918
  40. Dujardin CE, Mars RAT, Manemann SM, et al. Impact of air quality on the gastrointestinal microbiome: A review. Environ Res. 2020;186:109485. doi: https://doi.org/10.1016/j.envres.2020.109485
  41. Wang CS, Wang J, Zhang X, et al. Is the consumption of fast foods associated with asthma or other allergic diseases? Respirology. 2018;23(10):901–913. doi: https://doi.org/10.1111/resp.13339
  42. Zając-Gawlak I, Kłapcińska B, Kroemeke A, et al. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology. 2017;18(3):357–366. doi: https://doi.org/10.1007/s10522-017-9693-9
  43. Einarsson GG, Zhao J, LiPuma JJ, et al. Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Res. 2019;5(3):00128-2017. doi: https://doi.org/10.1183/23120541.00128-2017
  44. Soret P, Vandenborght LE, Francis F, et al. Respiratory mycobiome and suggestion of inter-kingdom network during acute pulmonary exacerbation in cystic fibrosis. Sci Rep. 2020;10(1):3589. doi: https://doi.org/10.1038/s41598-020-60015-4
  45. Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space. Microbiome. 2018;6(1):193. doi: https://doi.org/10.1186/s40168-018-0566-5
  46. Jameson KG, Olson CA, Kazmi SA, et al. Toward Understanding Microbiome-Neuronal Signaling. Mol Cell. 2020;78(4):577–583. doi: https://doi.org/10.1016/j.molcel.2020.03.006
  47. Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019;42(6):402–413. doi: https://doi.org/10.1016/j.tins.2019.03.008
  48. Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J Pediatr. 2019;204:126–133.е2. doi: https://doi.org/10.1016/j.jpeds.2018.08.042
  49. Piersigilli F, Van Grambezen B, Hocq C, et al. Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients. 2020;12(2):469. doi: https://doi.org/10.3390/nu12020469
  50. Nandakumar V, Aly H. Microbiota and chronic lung disease in preterm infants. Where is the truth? J Perinatol. 2020;40(7):983–984. doi: https://doi.org/10.1038/s41372-020-0666-5
  51. Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359(6371):114–119. doi: https://doi.org/0.1126/science.aam5809
  52. Martin CR, Osadchiy V, Kalani A, et al.The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–148. doi: https://doi.org/10.1016/j.jcmgh.2018.04.003
  53. Halnes I, Baines KJ, Berthon BS, et al. Soluble Fibre Meal Challenge Reduces Airway Inflammation and Expression of GPR43 and GPR41 in Asthma. Nutrients. 2017;9(1):57. doi: https://doi.org/10.3390/nu9010057
  54. Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol. 2020;65:129–141. doi: https://doi.org/10.1016/j.copbio.2020.02.006
  55. Astrup A, Magkos F, Bier DM, et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(7):844–857. doi: https://doi.org/10.1016/j.jacc.2020.05.077
  56. Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int J Mol Sci. 2020;21(16):5695. doi: https://doi.org/10.3390/ijms21165695
  57. Christie WW, Harwood JL. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020;64(3):401–421. doi: https://doi.org/10.1042/EBC20190082
  58. Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840–848. doi: https://doi.org/10.1038/s42255-020-0188-7
  59. Son SE, Kim NJ, Im DS. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol Ther (Seoul). 2021;29(1):22–30. doi: https://doi.org/10.4062/biomolther.2020.213
  60. Teng D, Chen J, Li D, et al. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model. 2020;60(6):3214–3230. doi: https://doi.org/10.1021/acs.jcim.0c00030
  61. Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci. 2020;21(11):4093. doi: https://doi.org/10.3390/ijms21114093
  62. He J, Zhang P, Shen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. doi: https://doi.org/10.3390/ijms21176356
  63. Ye Z, Wang S, Zhang C, et al. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne). 2020;11:617. doi: https://doi.org/10.3389/fendo.2020.00617
  64. Qiu X, Xie X, Meesapyodsuk D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res. 2020;79:101047. doi: https://doi.org/10.1016/j.plipres.2020.101047
  65. Cui J, Chen H, Tang X, et al. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol. 2020;104(23):9947–9963. doi: https://doi.org/10.1007/s00253-020-10958-5
  66. Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance. A review. Life Sci. 2018;203:255–267. doi: https://doi.org/10.1016/j.lfs.2018.04.049
  67. Franck M, de Toro-Martín J, Guénard F, et al. Prevention of Potential Adverse Metabolic Effects of a Supplementation with Omega-3 Fatty Acids Using a Genetic Score Approach. Lifestyle Genom. 2020;13(1):32–42. doi: https://doi.org/10.1159/000504022
  68. Brayner B, Kaur G, Keske MA, et al. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients. 2018;10(6):758. doi: https://doi.org/10.3390/nu10060758
  69. Holota Y, Dovbynchuk T, Kaji I, et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019;14(8):e0220642. doi: https://doi.org/10.1371/journal.pone.0220642
  70. Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients. 2020;12(4):1107. doi: https://doi.org/10.3390/nu12041107
  71. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25. doi: https://doi.org/10.3389/fendo.2020.00025
  72. Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: https://doi.org/10.1016/j.peptides.2020.170342
  73. Lupien-Meilleur J, Andrich DE, Quinn S, et al. Interplay between Gut Microbiota and Gastrointestinal Peptides: Potential Outcomes on the Regulation of Glucose Control. Can J Diabetes. 2020;44(4):359–367. doi: https://doi.org/10.1016/j.jcjd.2019.10.006
  74. Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710–е2716. doi: https://doi.org/10.1210/clinem/dgaa327
  75. Reimann F, Diakogiannaki E, Moss CE, et al. Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion. Peptides. 2020;125:170206. doi: https://doi.org/10.1016/j.peptides.2019.170206
  76. Sivaprakasam S, Bhutia YD, Yang S, et al. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol. 2017;8(1):299–314. doi: https://doi.org/10.1002/cphy.c170014
  77. Congreve M, de Graaf C, Swain NA, et al. Impact of GPCR Structures on Drug Discovery. Cell. 2020;181(1):81–91. doi: https://doi.org/10.1016/j.cell.2020.03.003
  78. Pujol JB, Christinat N, Ratinaud Y, et al. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018;10(4):473. doi: https://doi.org/10.3390/nu10040473
  79. Matoba A, Matsuyama N, Shibata S, et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L333–L348. doi: https://doi.org/10.1152/ajplung.00129.2017
  80. Mielenz M. Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal. 2017;11(6):1008–1016. doi: https://doi.org/10.1017/S175173111600238X
  81. Eckalbar WL, Erle DJ. Singling out Th2 cells in eosinophilic esophagitis. J Clin Invest. 2019;129(5):1830–1832. doi: https://doi.org/10.1172/JCI128479
  82. Imoto Y, Kato A, Takabayashi T, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43. Clin Exp Allergy. 2018;48(5):544–554. doi: https://doi.org/10.1111/cea.13119
  83. Mizuta K, Sasaki H, Zhang Y, et al. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2020; 318(6):L1248–L1260. doi: https://doi.org/10.1152/ajplung.00357.2019
  84. Li NX, Brown S, Kowalski T, et al. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes. 2018;67(7):1401–1413. doi: https://doi.org/10.2337/db18-0031
  85. Chen J, Sang Z, Li L, et al. Discovery of 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives as novel GRP119 agonists for the treatment of diabetes and obesity. Mol Divers. 2017;21(3):637–654. doi: https://doi.org/10.1007/s11030-017-9755-6
  86. Chen LH, Zhang Q, Xie X, et al. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists. J Med Chem. 2020;63(24):15399–15409. doi: https://doi.org/10.1021/acs.jmedchem.0c01378
  87. Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol. 2018;175(13):2543–2553. doi: https://doi.org/10.1111/bph.14042
  88. Priyadarshini M, Navarro G, Layden BT. Gut Microbiota: FFAR Reaching Effects on Islets. Endocrinology. 2018;159(6):2495–2505. doi: https://doi.org/10.1210/en.2018-00296
  89. Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. Curr Opin Endocr Metab Res. 2021;16:1–9. doi: https://doi.org/10.1016/j.coemr.2020.06.005
  90. Ang Z, Xiong D, Wu M, et al. FFAR2–FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J. 2018;32(1):289–303. doi: https://doi.org/10.1096/fj.201700252RR
  91. Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10(4):946–956. doi: https://doi.org/10.1038/mi.2016.114
  92. Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966. doi: https://doi.org/10.1111/cmi.12966
  93. Wang G, Jiang L, Wang J, et al. The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza a Virus Entry. J Virol. 2020;94(2): e01707–19. doi: https://doi.org/10.1128/JVI.01707-19
  94. Galvao I, Tavares LP, Correa RO, et al. The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front Immunol. 2018;9:142. doi: https://doi.org/10.3389/fimmu.2018.00142
  95. Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 2018;11(3):785–795. doi: https://doi.org/10.1038/mi.2017.75
  96. Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–850. doi: https://doi.org/10.1038/s41385-019-0160-6
  97. Kordjazy N. Role of toll-like receptors in inflammatory bowel disease. Pharmacol. Res. 2018;129:204–215. doi: https://doi.org/10.1016/j.phrs.2017.11.017
  98. Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol. 2019;10:1404. doi: https://doi.org/10.3389/fimmu.2019.01404
  99. Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology. 2020;160(2);171–182. doi: https://doi.org/10.1111/imm.13195
  100. Lv J, Yu Q, Lv J, et al. Airway epithelial TSLP production of TLR2 drives type 2 immunity in allergic airway inflammation. Eur J Immunol. 2018;48(11):1838–1850. doi: https://doi.org/10.1002/eji.201847663
  101. Сhristou EAA, Giardino G, Stefanaki E, et al. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019;38(2):70–78. doi: https://doi.org/10.1080/08830185.2019.1588267
  102. Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. doi: https://doi.org/10.3389/fimmu.2018.01027
  103. Li Y, Deng SL, Lian ZX, et al. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019;8(6):576. doi: https://doi.org/10.3390/cells8060576
  104. Nkosi V, Rathogwa-Takalani F, Voyi K. The Frequency of Fast Food Consumption in Relation to Wheeze and Asthma among Adolescents in Gauteng and North West Provinces, South Africa. Int J Environ Res Public Health. 2020;17(6). doi: https://doi.org/10.3390/ijerph17061994
  105. Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Molecular targets of fatty acid ethanolamides in asthma. Medicina (Kaunas). 2019:55(4):87. doi: https://doi.org/10.3390/medicina55040087
  106. Zhang D, Li S, Wang N, et al. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol. 2020;11:301. doi: https://doi.org/10.3389/fmicb.2020.00301
  107. West CE, Dzidic M, Prescott SL, et al. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int. 2017;66(4):529–538. doi: https://doi.org/10.1016/j.alit.2017.08.001
  108. Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep. 2020;10(1):2232. doi: https://doi.org/10.1038/s41598-020-59314-7
  109. Verstegen REM, Kostadinova AI, Merenciana Z, et al. Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients. 2021;13(11):4153. doi: https://doi.org/10.3390/nu13114153
  110. Zou XL, Wu JJ, Ye HX, et al. Associations between Gut Microbiota and Asthma Endotypes: A Cross-Sectional Study in South China Based on Patients with Newly Diagnosed Asthma. J Asthma Allergy. 2021;14:981–992. doi: https://doi.org/10.2147/JAA.S320088

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The mechanism of FFAR1 influence on the contraction of smooth muscles of the respiratory tract. Short- and medium-chain LCCs bind to FAR 1 and activate the receptor. The Gßy subunit dissociated from FFAR1 activates the membrane phospholipase Cß (PLCß), which, in turn, hydrolyzes phosphatidylinositol-4,5-bisphosphonate (PIP2) into diacylglycerin (DAG) and inositol triphosphate (IP3).IP3, binding to the IP3 receptor located on the sarcoplasmic reticulum, leads to the outflow of Ca2 + in cytoplasm, which causes the contraction of the smooth muscles of the respiratory tract

Download (222KB)

Copyright (c) 2022 Kytikova O.Y., Denisenko Y.K., Novgorodtseva T.P., Antonyuk M.V., Gvozdenko T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».