The Short Chain Free Fatty Acids and Their Receptors in the Microbiotic Concept for Asthma Development
- Authors: Kytikova O.Y.1, Denisenko Y.K.1, Novgorodtseva T.P.1, Antonyuk M.V.1, Gvozdenko T.A.1
-
Affiliations:
- Far Eastern Scientific Center of Physiology and Pathology of Respiration
- Issue: Vol 77, No 2 (2022)
- Pages: 131-142
- Section: PULMONOLOGY: CURRENT ISSUES
- URL: https://journals.rcsi.science/vramn/article/view/125630
- DOI: https://doi.org/10.15690/vramn1608
- ID: 125630
Cite item
Full Text
Abstract
Asthma is a chronic, heterogeneous inflammatory disease with a high variability of the flow caused by the trigger influence of genetic and environmental factors. The heterogeneity of asthma indicates the involvement of many components in the mechanism of the inflammation of the respiratory tract. Currently, the microbiotic concept of the pathogenesis of respiratory system diseases is studied, based on the existence of a bilateral relationship between the microflora lungs and the intestines. The key mechanism of these relationships is free fatty acids performing signal and regulatory functions in the body. The medium-chain and long-chain free fatty acids are synthesized by de novo or enter the body as a result of consumption of fats, while the short-chain free fatty acids are formed in the intestine as a result of partial digestion of soluble fibre. The mechanism connecting the free fatty acids and inflammatory reactions includes activation of their receptors (Free Fatty Acid Receptor, FFAR) expressed on the cells of the gastrointestinal and respiratory tract, as well as on immune cells. If the role of the medium-chain and long-chain fatty acids receptors (FFAR1, FFAR4) and their ligands in the pathogenesis of asthma is actively studied, the value of the short-chain receptors (FFAR2, FFAR3) only begins to attract the attention of researchers in connection with the emergence of numerous data on the interconnection of the respiratory microbiome paths and intestines and its possible role in the induction of broncho-pulmonary complications. This review includes modern knowledge of the microbiotic concept of asthma, the basic information about the nomenclature, metabolism and transport of the free fatty acids, the value of the individual classes of the free fatty acids in the regulation of immune processes is normal and at bronchopulmonary pathology. The latest data of the FFAR receptors are systematized, features of their activation and expression, the intended role of FFAR2 and FFAR3 in the development and asthma therapy. It is discussed that gastrointestinal microbiota correction can reduce the activity of chronic inflammation of the respiratory tract at asthma.
Full Text
##article.viewOnOriginalSite##About the authors
Oksana Y. Kytikova
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-code: 3006-5614
MD, PhD
Russian Federation, 22 Kalinina str., 675000, BlagoveschenskYuliya K. Denisenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-code: 4997-3432
PhD in Biology
Russian Federation, 22 Kalinina str., 675000, BlagoveschenskTatyana P. Novgorodtseva
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-code: 5888-6099
PhD in Biology, Professor
Russian Federation, 22 Kalinina str., 675000, BlagoveschenskMarina V. Antonyuk
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Email: antonyukm@mail.ru
ORCID iD: 0000-0002-2492-3198
SPIN-code: 3446-4852
MD, PhD, Professor
Russian Federation, 22 Kalinina str., 675000, BlagoveschenskTatyana A. Gvozdenko
Far Eastern Scientific Center of Physiology and Pathology of Respiration
Author for correspondence.
Email: vfdnz@mail.ru
ORCID iD: 0000-0002-6413-9840
SPIN-code: 7869-1692
MD, PhD, Professor
Russian Federation, 22 Kalinina str., 675000, BlagoveschenskReferences
- Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2019). Available from: http://ginasthma.com
- Novakova P, Tiotiu A, Baiardini I, et al. Allergen immunotherapy in asthma: current evidence. J Asthma. 2021;58(2):223–230. doi: https://doi.org/10.1080/02770903.2019.1684517
- Delgado J, Dávila IJ, Domínguez-Ortega J. Severe Asthma Group (SEAIC). Clinical Recommendations for the Management of Biological Treatments in Severe Asthma Patients: A Consensus Statement. J Investig Allergol Clin Immunol. 2021;31(1):36–43. doi: https://doi.org/10.18176/jiaci.0638
- Monga N, Sethi GS, Kondepudi KK, et al. Lipid mediators and asthma: Scope of therapeutics. Biochem Pharmacol. 2020;179:113925. doi: https://doi.org/10.1016/j.bcp.2020.113925
- Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci. 2020;21(24):9580. doi: https://doi.org/10.3390/ijms21249580
- Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., и др. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы // Ожирение и метаболизм. — 2018. — Т. 15. — № 4. — С. 9–14. [Kytikova OJu, Antonjuk MV, Gvozdenko TA, i dr. Metabolicheskie aspekty vzaimosvjazi ozhirenija i bronhial’noj astmy. Ozhirenie i metabolizm. 2018;15(4):9–14. (In Russ.)] doi: https://doi.org/10.14341/OMET9578
- Kim JS, Steffen BT, Podolanczuk AJ, et al. Associations of ω-3 Fatty Acids with Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults. Am J Epidemiol. 2021;190(1):95–108. doi: https://doi.org/10.1093/aje/kwaa168
- Kimura I, Ichimura A, Ohue-Kitano R, et al. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2020;100(1):171–210. doi: https://doi.org/10.1152/physrev.00041.2018
- Zhang L, Hames KC, Jensen MD. Regulation of direct adipose tissue free fatty acid storage during mixed meal ingestion and high free fatty acid concentration conditions. Am J Physiol Endocrinol Metab. 2021;320(2):E208–E218. doi: https://doi.org/10.1152/ajpendo.00408.2020
- Grundmann M, Bender E, Schamberger J, et al. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci. 2021;22(4):1763. doi: https://doi.org/10.3390/ijms22041763
- Jakubíк J, Randáková A, Chetverikov N, et al. The operational model of allosteric modulation of pharmacological agonism. Sci Rep. 2020;10(1):14421. doi: https://doi.org/10.1038/s41598-020-71228-y
- Haak AJ, Ducharme MT, Diaz Espinosa AM, et al. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci. 2020;41(3):172–182. doi: https://doi.org/10.1016/j.tips.2019.12.008
- Gusach A, Maslov I, Luginina A, et al. Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol. 2020;63:18–25. doi: https://doi.org/10.1016/j.sbi.2020.03.004
- Xu S, Schwab A, Karmacharya N, et al. FFAR1 activation attenuates histamine-induced myosin light chain phosphorylation and cortical tension development in human airway smooth muscle cells. Respir Res. 2020;21(1):317. doi: https://doi.org/10.1186/s12931-020-01584-w
- Rutting S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L157–L174. doi: https://doi.org/10.1152/ajplung.00306.2018
- Hu Y, Kang Y, Liu X, et al. Distinct lung microbial community states in patients with pulmonary tuberculosis. Sci China Life Sci. 2020;63(10):1522–1533. doi: https://doi.org/10.1007/s11427-019-1614-0
- Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020:11(4):1030–1042. doi: https://doi.org/10.1080/19490976.2020.1737487
- Ekanayake A, Madegedara D, Chandrasekharan V, et al. Respiratory Bacterial Microbiota and Individual Bacterial Variability in Lung Cancer and Bronchiectasis Patients. Indian J Microbiol. 2020;60(2):196–205. doi: https://doi.org/10.1007/s12088-019-00850-w
- Cuthbertson L, Walker AW, Oliver AE, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8(1):45. doi: https://doi.org/10.1186/s40168-020-00810-3
- Dickson RP, Harari S, Kolb M. Making the case for causality: what role do lung microbiota play in idiopathic pulmonary fibrosis? Eur Respir J. 2020;55(4):2000318. doi: https://doi.org/10.1183/13993003.00318-2020
- Durack J, Christian LS, Nariya S, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020;146(5):1016–1026. doi: https://doi.org/10.1016/j.jaci.2020.03.028
- Fu X, Li Y, Meng Y, et al. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. Indoor Air. 2020:30(5);816–826. doi: https://doi.org/10.1111/ina.12677
- Proctor L. What’s next for the human microbiome? Nature. 2019; 569(7758):623–625. doi: https://doi.org/10.1038/d41586-019-01654-0
- Enaud R, Prevel R, Ciarlo E, et al. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020;10:9. doi: https://doi.org/10.3389/fcimb.2020.00009
- Arrieta M-C, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424–434.e10. doi: https://doi.org/0.1016/j.jaci.2017.08.041
- Skalski JH, Limon JJ, Sharma P, et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog. 2018;14(9):e1007260. doi: https://doi.org/10.1371/journal.ppat.1007260
- Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity. 2019;51(2):285–297.e5. doi: https://doi.org/10.1016/j.immuni.2019.06.002
- Barcik W, Boutin RCT, Sokolowska M, et al. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241–255. doi: https://doi.org/10.1016/j.immuni.2020.01.007
- Du X, Wei J, Tian D, et al. miR-182-5p contributes to intestinal injury in a murine model of Staphylococcus aureus pneumonia-induced sepsis via targeting surfactant protein D. J Cell Physiol. 2019;235(1):563–572. doi: https://doi.org/10.1002/jcp.28995
- Sallustio F, Curci C, Stasi A, et al. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int. 2019;6795845. doi: https://doi.org/10.1155/2019/6795845
- Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. doi: https://doi.org/10.1080/15548627.2019.1635384
- Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17(5):263–278. doi: https://doi.org/10.1038/s41575-019-0261-4
- Kytikova OY, Perelman JM, Novgorodtseva TP, et al. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res. 2020;2020:8906968. doi: https://doi.org/10.1155/2020/8906968
- Sender R, Fuchs S, Milo R, et al. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016; 14(8):e1002533. doi: https://doi.org/10.1371/journal.pbio.1002533
- Sundström K, Mishra PP, Pyysalo MJ, et al. Similarity of salivary microbiome in parents and adult children. PeerJ. 2020;8:e8799. doi: https://doi.org/10.7717/peerj.8799
- Villette R, Kc P, Beliard S, et al. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol. 2020;11:278. doi: https://doi.org/10.3389/fphar.2020.00278
- Otto M. Staphylococci in the human microbiome: the role of host and interbacterial interactions. Curr Opin Microbiol. 2020;53:71–77. doi: https://doi.org/10.1016/j.mib.2020.03.003
- McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39–49. doi: https://doi.org/10.1002/eji.201646721
- Vandenborght LE, Enaud R, Coron N, et al. From culturomics to metagenomics: the mycobiome in chronic respiratory diseases. The Lung Microbiome (Norwich: European Respiratory Society). 2019;88–118. doi: https://doi.org/10.1183/2312508X.10015918
- Dujardin CE, Mars RAT, Manemann SM, et al. Impact of air quality on the gastrointestinal microbiome: A review. Environ Res. 2020;186:109485. doi: https://doi.org/10.1016/j.envres.2020.109485
- Wang CS, Wang J, Zhang X, et al. Is the consumption of fast foods associated with asthma or other allergic diseases? Respirology. 2018;23(10):901–913. doi: https://doi.org/10.1111/resp.13339
- Zając-Gawlak I, Kłapcińska B, Kroemeke A, et al. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology. 2017;18(3):357–366. doi: https://doi.org/10.1007/s10522-017-9693-9
- Einarsson GG, Zhao J, LiPuma JJ, et al. Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Res. 2019;5(3):00128-2017. doi: https://doi.org/10.1183/23120541.00128-2017
- Soret P, Vandenborght LE, Francis F, et al. Respiratory mycobiome and suggestion of inter-kingdom network during acute pulmonary exacerbation in cystic fibrosis. Sci Rep. 2020;10(1):3589. doi: https://doi.org/10.1038/s41598-020-60015-4
- Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space. Microbiome. 2018;6(1):193. doi: https://doi.org/10.1186/s40168-018-0566-5
- Jameson KG, Olson CA, Kazmi SA, et al. Toward Understanding Microbiome-Neuronal Signaling. Mol Cell. 2020;78(4):577–583. doi: https://doi.org/10.1016/j.molcel.2020.03.006
- Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019;42(6):402–413. doi: https://doi.org/10.1016/j.tins.2019.03.008
- Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J Pediatr. 2019;204:126–133.е2. doi: https://doi.org/10.1016/j.jpeds.2018.08.042
- Piersigilli F, Van Grambezen B, Hocq C, et al. Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients. 2020;12(2):469. doi: https://doi.org/10.3390/nu12020469
- Nandakumar V, Aly H. Microbiota and chronic lung disease in preterm infants. Where is the truth? J Perinatol. 2020;40(7):983–984. doi: https://doi.org/10.1038/s41372-020-0666-5
- Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359(6371):114–119. doi: https://doi.org/0.1126/science.aam5809
- Martin CR, Osadchiy V, Kalani A, et al.The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–148. doi: https://doi.org/10.1016/j.jcmgh.2018.04.003
- Halnes I, Baines KJ, Berthon BS, et al. Soluble Fibre Meal Challenge Reduces Airway Inflammation and Expression of GPR43 and GPR41 in Asthma. Nutrients. 2017;9(1):57. doi: https://doi.org/10.3390/nu9010057
- Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol. 2020;65:129–141. doi: https://doi.org/10.1016/j.copbio.2020.02.006
- Astrup A, Magkos F, Bier DM, et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(7):844–857. doi: https://doi.org/10.1016/j.jacc.2020.05.077
- Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int J Mol Sci. 2020;21(16):5695. doi: https://doi.org/10.3390/ijms21165695
- Christie WW, Harwood JL. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020;64(3):401–421. doi: https://doi.org/10.1042/EBC20190082
- Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840–848. doi: https://doi.org/10.1038/s42255-020-0188-7
- Son SE, Kim NJ, Im DS. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol Ther (Seoul). 2021;29(1):22–30. doi: https://doi.org/10.4062/biomolther.2020.213
- Teng D, Chen J, Li D, et al. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model. 2020;60(6):3214–3230. doi: https://doi.org/10.1021/acs.jcim.0c00030
- Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci. 2020;21(11):4093. doi: https://doi.org/10.3390/ijms21114093
- He J, Zhang P, Shen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. doi: https://doi.org/10.3390/ijms21176356
- Ye Z, Wang S, Zhang C, et al. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne). 2020;11:617. doi: https://doi.org/10.3389/fendo.2020.00617
- Qiu X, Xie X, Meesapyodsuk D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res. 2020;79:101047. doi: https://doi.org/10.1016/j.plipres.2020.101047
- Cui J, Chen H, Tang X, et al. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol. 2020;104(23):9947–9963. doi: https://doi.org/10.1007/s00253-020-10958-5
- Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance. A review. Life Sci. 2018;203:255–267. doi: https://doi.org/10.1016/j.lfs.2018.04.049
- Franck M, de Toro-Martín J, Guénard F, et al. Prevention of Potential Adverse Metabolic Effects of a Supplementation with Omega-3 Fatty Acids Using a Genetic Score Approach. Lifestyle Genom. 2020;13(1):32–42. doi: https://doi.org/10.1159/000504022
- Brayner B, Kaur G, Keske MA, et al. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients. 2018;10(6):758. doi: https://doi.org/10.3390/nu10060758
- Holota Y, Dovbynchuk T, Kaji I, et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019;14(8):e0220642. doi: https://doi.org/10.1371/journal.pone.0220642
- Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients. 2020;12(4):1107. doi: https://doi.org/10.3390/nu12041107
- Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25. doi: https://doi.org/10.3389/fendo.2020.00025
- Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: https://doi.org/10.1016/j.peptides.2020.170342
- Lupien-Meilleur J, Andrich DE, Quinn S, et al. Interplay between Gut Microbiota and Gastrointestinal Peptides: Potential Outcomes on the Regulation of Glucose Control. Can J Diabetes. 2020;44(4):359–367. doi: https://doi.org/10.1016/j.jcjd.2019.10.006
- Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710–е2716. doi: https://doi.org/10.1210/clinem/dgaa327
- Reimann F, Diakogiannaki E, Moss CE, et al. Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion. Peptides. 2020;125:170206. doi: https://doi.org/10.1016/j.peptides.2019.170206
- Sivaprakasam S, Bhutia YD, Yang S, et al. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol. 2017;8(1):299–314. doi: https://doi.org/10.1002/cphy.c170014
- Congreve M, de Graaf C, Swain NA, et al. Impact of GPCR Structures on Drug Discovery. Cell. 2020;181(1):81–91. doi: https://doi.org/10.1016/j.cell.2020.03.003
- Pujol JB, Christinat N, Ratinaud Y, et al. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018;10(4):473. doi: https://doi.org/10.3390/nu10040473
- Matoba A, Matsuyama N, Shibata S, et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L333–L348. doi: https://doi.org/10.1152/ajplung.00129.2017
- Mielenz M. Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal. 2017;11(6):1008–1016. doi: https://doi.org/10.1017/S175173111600238X
- Eckalbar WL, Erle DJ. Singling out Th2 cells in eosinophilic esophagitis. J Clin Invest. 2019;129(5):1830–1832. doi: https://doi.org/10.1172/JCI128479
- Imoto Y, Kato A, Takabayashi T, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43. Clin Exp Allergy. 2018;48(5):544–554. doi: https://doi.org/10.1111/cea.13119
- Mizuta K, Sasaki H, Zhang Y, et al. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2020; 318(6):L1248–L1260. doi: https://doi.org/10.1152/ajplung.00357.2019
- Li NX, Brown S, Kowalski T, et al. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes. 2018;67(7):1401–1413. doi: https://doi.org/10.2337/db18-0031
- Chen J, Sang Z, Li L, et al. Discovery of 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives as novel GRP119 agonists for the treatment of diabetes and obesity. Mol Divers. 2017;21(3):637–654. doi: https://doi.org/10.1007/s11030-017-9755-6
- Chen LH, Zhang Q, Xie X, et al. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists. J Med Chem. 2020;63(24):15399–15409. doi: https://doi.org/10.1021/acs.jmedchem.0c01378
- Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol. 2018;175(13):2543–2553. doi: https://doi.org/10.1111/bph.14042
- Priyadarshini M, Navarro G, Layden BT. Gut Microbiota: FFAR Reaching Effects on Islets. Endocrinology. 2018;159(6):2495–2505. doi: https://doi.org/10.1210/en.2018-00296
- Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. Curr Opin Endocr Metab Res. 2021;16:1–9. doi: https://doi.org/10.1016/j.coemr.2020.06.005
- Ang Z, Xiong D, Wu M, et al. FFAR2–FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J. 2018;32(1):289–303. doi: https://doi.org/10.1096/fj.201700252RR
- Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10(4):946–956. doi: https://doi.org/10.1038/mi.2016.114
- Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966. doi: https://doi.org/10.1111/cmi.12966
- Wang G, Jiang L, Wang J, et al. The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza a Virus Entry. J Virol. 2020;94(2): e01707–19. doi: https://doi.org/10.1128/JVI.01707-19
- Galvao I, Tavares LP, Correa RO, et al. The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front Immunol. 2018;9:142. doi: https://doi.org/10.3389/fimmu.2018.00142
- Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 2018;11(3):785–795. doi: https://doi.org/10.1038/mi.2017.75
- Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–850. doi: https://doi.org/10.1038/s41385-019-0160-6
- Kordjazy N. Role of toll-like receptors in inflammatory bowel disease. Pharmacol. Res. 2018;129:204–215. doi: https://doi.org/10.1016/j.phrs.2017.11.017
- Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol. 2019;10:1404. doi: https://doi.org/10.3389/fimmu.2019.01404
- Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology. 2020;160(2);171–182. doi: https://doi.org/10.1111/imm.13195
- Lv J, Yu Q, Lv J, et al. Airway epithelial TSLP production of TLR2 drives type 2 immunity in allergic airway inflammation. Eur J Immunol. 2018;48(11):1838–1850. doi: https://doi.org/10.1002/eji.201847663
- Сhristou EAA, Giardino G, Stefanaki E, et al. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019;38(2):70–78. doi: https://doi.org/10.1080/08830185.2019.1588267
- Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. doi: https://doi.org/10.3389/fimmu.2018.01027
- Li Y, Deng SL, Lian ZX, et al. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019;8(6):576. doi: https://doi.org/10.3390/cells8060576
- Nkosi V, Rathogwa-Takalani F, Voyi K. The Frequency of Fast Food Consumption in Relation to Wheeze and Asthma among Adolescents in Gauteng and North West Provinces, South Africa. Int J Environ Res Public Health. 2020;17(6). doi: https://doi.org/10.3390/ijerph17061994
- Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Molecular targets of fatty acid ethanolamides in asthma. Medicina (Kaunas). 2019:55(4):87. doi: https://doi.org/10.3390/medicina55040087
- Zhang D, Li S, Wang N, et al. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol. 2020;11:301. doi: https://doi.org/10.3389/fmicb.2020.00301
- West CE, Dzidic M, Prescott SL, et al. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int. 2017;66(4):529–538. doi: https://doi.org/10.1016/j.alit.2017.08.001
- Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep. 2020;10(1):2232. doi: https://doi.org/10.1038/s41598-020-59314-7
- Verstegen REM, Kostadinova AI, Merenciana Z, et al. Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients. 2021;13(11):4153. doi: https://doi.org/10.3390/nu13114153
- Zou XL, Wu JJ, Ye HX, et al. Associations between Gut Microbiota and Asthma Endotypes: A Cross-Sectional Study in South China Based on Patients with Newly Diagnosed Asthma. J Asthma Allergy. 2021;14:981–992. doi: https://doi.org/10.2147/JAA.S320088
Supplementary files
