矫正鞋对脑性瘫痪患者步行时足间负荷分布指标的影响
- 作者: Smirnova L.M.1,2, Koltsov A.A.1, Dzhomardly E.I.1
-
隶属关系:
- Federal Scientific Center for Rehabilitation of Disabled People named after G.A. Albrecht
- Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
- 期: 卷 9, 编号 1 (2021)
- 页面: 51-61
- 栏目: Original Study Article
- URL: https://journals.rcsi.science/turner/article/view/41766
- DOI: https://doi.org/10.17816/PTORS41766
- ID: 41766
如何引用文章
详细
论证。根据对痉挛性脑瘫患者的临床观察和一项调查,这种患者最常用的康复技术手段是矫正鞋。与此同时,关于其对步行生物力学影响的临床和器械研究几乎没有。
目的是确定矫正鞋对具有不同程度的整体运动功能障碍(GMFCS)的脑瘫儿童步行时足底面带间负荷分布的影响。
材料与方法。对42例(年龄为5-16岁)GMFCS水平为1-3的脑瘫患者进行了生物力学研究,他们穿着两种类型的鞋行走—标准(即不影响足部功能)和矫正鞋;对照组的14例也穿着标准鞋(足总数量为112只)进行了检查。在SPSS for Windows程序中使用非参数方法进行统计数据分析。
结果。GMFCS 1的患者使用复杂的矫正鞋,导致足部与支撑体相互作用的主要指标偏离常态的情况加重,表现为脚跟部分负荷的减少,增加脚尖与脚后跟的载荷比,束区中外侧荷载分布。在GMFCS 2水平的患者中,矫正鞋的归一化作用仅体现在束区内侧负荷分布方面。在GMFCS 3水平的患者中,矫正鞋对足部负荷分布的指标有更多的归一化作用。
结论。研究表明,在儿童和青少年脑瘫患者中,GMFCS 3组患者使用复杂的矫正鞋,使足下的区间负荷分布最显著的正常化,在GMFCS 2组患者中不显著,GMFCS 1组患者使用复合矫正鞋导致指标病理偏差加重。
作者简介
Lyudmila Smirnova
Federal Scientific Center for Rehabilitation of Disabled People named after G.A. Albrecht; Saint Petersburg State Electrotechnical University “LETI” named after V.I. Ulyanov (Lenin)
Email: info@diaserv.ru
ORCID iD: 0000-0003-4373-9342
SPIN 代码: 5020-1408
Doctor of Engineering Science
俄罗斯联邦, 50 Bestuzhevskaya str., Saint Petersburg, 195067; Saint PetersburgAndrey Koltsov
Federal Scientific Center for Rehabilitation of Disabled People named after G.A. Albrecht
编辑信件的主要联系方式.
Email: katandr2007@yandex.ru
ORCID iD: 0000-0002-0862-8826
SPIN 代码: 2767-3392
MD, PhD
俄罗斯联邦, 50 Bestuzhevskaya str., Saint Petersburg, 195067Elnur Dzhomardly
Federal Scientific Center for Rehabilitation of Disabled People named after G.A. Albrecht
Email: mamedov.ie@yandex.ru
ORCID iD: 0000-0002-0281-3262
SPIN 代码: 5853-0260
MD, PhD student
俄罗斯联邦, 50 Bestuzhevskaya str., Saint Petersburg, 195067参考
- Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016;1:448–460. doi: 10.1302/2058-5241.1.000052
- Valentina J, Davidson SA, Bear N, et al. A prospective study investigating gross motor function of children with cerebral palsy and GMFCS level II after long-term botulinum toxin type A use. BMC Pediatrics. 2020;20(1):7. doi: 10.1186/s12887-019-1906-8
- Collado-Garrido L, Paras-Bravo P, Calvo-Martin P, Santibanez-Marguello M. Impact of resistance therapy on motor function in children with cerebral palsy: A systematic review and meta-analysis. Int J Environ Res Public Health. 2019;16(22):e4513. doi: 10.3390/ijerph16224513
- Saleh M, Almasri NA, Malkawi SH, Abu-Dahab S. Associations between impairments and activity limitations components of the international classification of functioning and the gross motor function and subtypes of children with cerebral palsy. J Phys Ther Sci. 2019;31(4):299–395. doi: 10.1589/jpts.31.299
- Lee BH. Relationship between gross motor function and the function, activity and participation components of the international classification of functioning in children with spastic cerebral palsy. J Phys Ther Sci. 2017;29(10):1732–1736. doi: 10.1589/jpts.29.1732
- Son I, Lee D, Hong S, Lee K, Lee G. Comparison of gait ability of a child with cerebral palsy according to the difference of dorsiflexion angle of hinged ankle-foot orthosis: A case report. Am J Case Rep. 2019;20:1454–1459. doi: 10.12659/AJCR.916814
- Kim HY, Cha YH, Byun JY, Chun YS, Choy WS. Changes in gait parameters after femoral derotational osteotomy in cerebral palsy patients with medial femoral torsion. Journal of Pediatric Orthopaedics B. 2018;27:194–199. doi: 10.1097/BPB.0000000000000467
- Patel DR, Neelakantan M, Pandher K, Merrick J. Cerebral palsy in children: a clinical overview. Transl Pediatr. 2020;9(suppl.1):S125–S135. doi: 10.21037/tp.2020.01.01
- Rasmussen HM, Pederson NW, Overgaard S, et al. Gait analysis for individually tailored interdisciplinary intervention in children with cerebral palsy: a randomized controlled trail. Dev Med Child Neurol. 2019;61(10):1189–1195. doi: 10.1111/dmcn.14178
- Young J, Jackson S. Improved motor function in a pre-ambulatory child with spastic bilateral cerebral palsy, using a custom rigid ankle-foot orthosis-footwear combination: A case report. Prosthet Orthot Int. 2019;43(4):453–458. doi: 10.1177/0309364619852239
- Reis AJ, Schwartz MH. Ground reaction and solid ankle-foot orthoses are equivalent for the correction of crouch gait in children with cerebral palsy. Dev Med Child Neurol. 2019;61(2):219–225. doi: 10.1111/dmcn.13999
- Schwarze M, Block J, Kunz T, et al. The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture. 2019;68:525–530. doi: 10.1016/j.gaitpost.2019.01.006
- Dzhomardly EI, Koltsov AA. Analysis of the use of technical means for rehabilitation of patients with spastic types of cerebral palsy depending on the level of patient’ motor function. Genij ortopedii. 2020;26(1):57–64. doi: 10.18019/1028-4427-2020-26-1-57-64. (In Russ.)
- Meyns P, Kerkum YL, Brehm MA, et al. Ankle foot orthoses in cerebral palsy: Effects of ankle stiffness on trunk kinematics, gait stability and energy cost of walking. Eur J Paediatr Neurol. 2020;26:68–74. doi: 10.1016/j.ejpn.2020.02.009
- Wright E, DiBello SA. Principles of ankle-foot orthosis prescription in ambulatory bilateral cerebral palsy. Phys. Med. Rehabil. Clin. N. Am. 2020;31(1):69–89. doi: 10.1016/j.pmr.2019.09.007
- Aboutorabi A, Arazpour M, Ahmadi Bani M, et al. Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review. Ann. Phys. Rehabil. Med. 2017;60(6): 393–402. doi: 10.1016/j.rehab.2017.05.004
- Murri A, Zechner G. Corrective dynamic shoe fitting of the functional clubfoot in patients with infantile cerebral palsy. Z. Orthop. Ihre. Grenzgeb. 1994;132(3):214–220. (In German)
- Bekk NV, Belova LA, Lapina TS. Feature customization of orthopedic shoes for children with cerebral palsy. ISJ Theoretical and Applied Science. 2018;12(68):117–121. doi: 10.15863/TAS.2018.12.68.21
- Uzakova LP, Mukhammedova MO. Technological solution construction of orthopedic shoes considering biometherics of lower extremities. World science: Problems and Innovation. Penza: Nauka i Prosveshhenie; 2018. P. 47–51. (In Russ.)
- Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x
- Smirnova LM. Hardware-Software complex for assessment of anatomic-functional disturbances and orthosis efficiency in patients with foot pathology. Biomedical Engineering. 2009;43(6):260–264. doi: 10.1007/s10527-010-9137-1. (In Russ.)
- Sees JP, Miller F. Overview of foot deformity management in children with cerebral palsy. J Child Orthop. 2013;7:373–377. doi: 10.1007/s11832-013-0509-4
- Silfverskoild N. Reduction of the uncrossed two-joints muscles of the leg to one-joint muscles in spastic condition. Acta Chir Scand. 1924;56:315–328.
- Mosca VS. Flexible flatfoot in children and adolescents. J. Child. Orthop. 2010;4(2):107–121. doi: 10.1007/s11832-010-0239-9
- Falisse A, Pitto L, Kainz H, et al., Physics-based stimulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in children cerebral palsy: A retrospective case study. Front Hum Neurosci. 2020;14:40. doi: 10.3389/fnhum.2020.00040
补充文件
