延长型跟骨截骨术中骨间隙形态与尺寸对不同类型扁平足矫正效果的影响:尸体实验研究
- 作者: Kozhevnikov O.V.1, Sosin A.I.1, Rogova M.S.1, Mursalov A.K.1
-
隶属关系:
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
- 期: 卷 13, 编号 4 (2025)
- 页面: 398-409
- 栏目: Experimental and theoretical research
- URL: https://journals.rcsi.science/turner/article/view/375528
- DOI: https://doi.org/10.17816/PTORS687820
- EDN: https://elibrary.ru/DESOAY
- ID: 375528
如何引用文章
详细
论证。尽管儿童扁平足十分常见,其外科治疗方法的发展在一定程度上超前于相应的生物力学论证。尸体实验研究始终是创伤骨科与矫形外科中深入理解畸形生物力学的重要方法之一。针对不同临床类型的儿童扁平足,矫正手术中骨间隙参数的术前规划仍需进一步明确。
目的。在受控条件下(尸体研究),评估骨间隙的形态及尺寸对不同类型扁平足在行延长型跟骨截骨术时矫正效果的影响。
方法。开展了一项实验性尸体研究,使用垂直负荷模拟装置,并在放射学控制下进行。实验共使用8具小腿与足部的解剖标本。研究分为两个阶段。第一阶段对解剖标本进行准备,使其能够固定于垂直负荷模拟装置中,并在“无负荷”和“750 N 负荷”条件下进行放射学检查。第二阶段构建可模拟两种临床类型的扁平足尸体模型(外展-扁平-外翻型畸形和平足畸形),随后实施跟骨截骨术,并在放射学监控下依次植入不同形态的专用植入物。研究过程中评估以下影像学测量指标: Kite角、距舟关节对应角(V. Mosca法)、骰骨外展角、纵弓角、跟骨倾斜角及Meary角。
结果。在研究第一阶段,在处理小腿与足部的解剖标本过程中,依据所建立的方法获得了具有良好重复性的扁平足尸体模型,并能够模拟两种临床类型:外展-扁平-外翻型畸形和平足畸形。第二阶段结果显示,在实施延长型跟骨截骨术并使用不同植入物时,放射测量参数的变化取决于扁平足的临床类型,提示其矫正过程具有不同的生物力学特征。
结论。研究表明,依据扁平足的临床类型选择相应形态的骨间隙,可能在恢复足部正常构型中发挥关键作用。
关键词
作者简介
Oleg Kozhevnikov
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: kozhevnikovov@cito-priorov.ru
ORCID iD: 0000-0003-3929-6294
SPIN 代码: 9538-4058
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowAnton Sosin
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
编辑信件的主要联系方式.
Email: SosinAI@cito-priorov.ru
ORCID iD: 0009-0000-6399-8603
SPIN 代码: 5579-2844
MD
俄罗斯联邦, MoscowMariya Rogova
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: m.rogova24@mail.ru
ORCID iD: 0009-0002-7954-503X
SPIN 代码: 7472-9278
MD
俄罗斯联邦, MoscowAnatoly Mursalov
N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
Email: tamerlanmursalov@gmail.com
ORCID iD: 0000-0002-3829-5524
SPIN 代码: 9035-8198
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Moscow参考
- Evans AM, Rome K. A Cochrane review of the evidence for non-surgical interventions for flexible pediatric flat feet. Eur J Phys Rehabil Med. 2011;47(1):69–89.
- Pfeiffer M, Kotz R, Ledl T, et al. Prevalence of flat foot in preschool-aged children. Pediatrics. 2006;118(2):634–639. doi: 10.1542/peds.2005-2126
- Kenis VM, Lapkin YA, Khusainov RK, et al. Flexible flatfoot in children (review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2014;2(2):44–54. doi: 10.17816/PTORS2244-54 EDN: SJFIQD
- Armasov AR, Kiselev VY. Diagnostic value of the technique for feet visual estimation in adolescent platypodia determination. Orthopaedic Genius. 2010;(3):101–104. EDN: MTYNSN
- Evans D. Calcaneo-valgus deformity. J Bone Joint Surg Br. 1975;57(3):270–278.
- Mosca VS. Calcaneal lengthening for valgus deformity of the hindfoot. Results in children who had severe, symptomatic flatfoot and skewfoot. J Bone Joint Surg Am. 1995;77(4):500–512. doi: 10.2106/00004623-199504000-00002
- Benthien RA, Parks BG, Guyton GP, et al. Lateral column calcaneal lengthening, flexor digitorum longus transfer, and opening wedge medial cuneiform osteotomy for flexible flatfoot: a biomechanical study. Foot Ankle Int. 2007;28(1):70–77. doi: 10.3113/FAI.2007.0013
- Zhou H, Ren H, Li C, et al. Biomechanical analysis of cuboid osteotomy lateral column lengthening for stage II B adult-acquired flatfoot deformity: a cadaveric study. Biomed Res Int. 2017;2017:4383981. doi: 10.1155/2017/4383981
- Shabaldin NA, Shabaldin AV, Titov FV, et al. Comparative analysis of foot position in children using the foot posture index (FPI-6) with symptomatic and asymptomatic forms of flatfoot. Fundamental and Clinical Medicine. 2020;5(4):76–83. doi: 10.23946/2500-0764-2020-5-4-76-83 EDN: FZCURE
- Sangeorzan BJ, Mosca V, Hansen ST Jr. Effect of calcaneal lengthening on relationships among the hindfoot, midfoot, and forefoot. Foot Ankle. 1993;14(3):136–141. doi: 10.1177/107110079301400305
- Fischer KM, Willwacher S, Arndt A, et al. Calcaneal adduction and eversion are coupled to talus and tibial rotation. J Anat. 2018;233(1):64–72. doi: 10.1111/joa.12813
- Gentili A, Masih S, Yao L, et al. Pictorial review: foot axes and angles. Br J Radiol. 1996;69(826):968–974. doi: 10.1259/0007-1285-69-826-968
- Xia J, Zhang P, Yang YF, et al. Biomechanical analysis of the calcaneocuboid joint pressure after sequential lengthening of the lateral column. Foot Ankle Int. 2013;34(2):261–266. doi: 10.1177/1071100712464211
- Deland JT, Arnoczky SP, Thompson FM. Adult acquired flatfoot deformity at the talonavicular joint: reconstruction of the spring ligament in an in vitro model. Foot Ankle. 1992;13(6):327–332. doi: 10.1177/107110079201300606
- Huang CK, Kitaoka HB, An KN, et al. Biomechanical evaluation of longitudinal arch stability. Foot Ankle. 1993;14(6):353–357. doi: 10.1177/107110079301400609
补充文件

