漏斗胸患儿在手术治疗前后不同体型条件下身体垂直平衡的比较特征分析
- 作者: Nikityuk I.E.1, Garkavenko Y.E.1,2, Ryzhikov D.V.1, Dolgiev B.H.1
-
隶属关系:
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 13, 编号 4 (2025)
- 页面: 384-397
- 栏目: Clinical studies
- URL: https://journals.rcsi.science/turner/article/view/375527
- DOI: https://doi.org/10.17816/PTORS690038
- EDN: https://elibrary.ru/HVUGZC
- ID: 375527
如何引用文章
详细
论证。目前,为全面理解漏斗胸患儿器官和系统多环节功能机制,研究不仅探讨胸廓的生物力学,也研究整体机体的生物力学。这有助于临床医生理解机体对胸廓畸形外科矫正所产生的多样化适应性反应。
目的。研究不对称型漏斗胸患儿在康复治疗不同阶段的姿势反应变化,并分析其与体质指数的关系。
方法。研究纳入两组13–16岁、男女兼有的左侧重度漏斗胸患儿,均接受临床影像学检查及稳定测量评估。第一组包括18例体型偏瘦患儿,其体质指数低于18.50 kg/m2。第二组包括15例体型正常患儿,其体质指数高于18.50 kg/m2且低于24.99 kg/m2。排除标准包括:超重患儿;右侧或对称型漏斗胸;合并其他胸廓畸形或胸腰段脊柱畸形及异常者。所有患儿均接受以矫正前胸壁畸形为目的的微创重建手术。对身体总压力中心及双足对侧压力中心运动参数进行分析,评估时间点为术前及术后 (平均2年)。所得数据与20名同龄、体质指数正常的健康儿童进行比较。
结果。术前稳定测量结果显示,两组患者均存在垂直平衡障碍,且在体型偏瘦患儿中表现更为明显。推测畸形胸骨对心包的压迫可改变来自其本体感受器的神经传入信号特征,从而引发姿势控制系统的改变。此外,两组患者在姿势策略方面存在差异,这可能影响垂直平衡的稳定性。术后,正常体型患儿的垂直平衡改善程度明显优于体型偏瘦患儿。平衡功能恢复质量分别为83%和78%(p=0.047)。这一结果可归因于不同体质指数患儿姿势控制系统适应能力的差异。在心包受压解除后,与体型偏瘦患儿相比,正常体型患儿本体感觉信号谱的变化可能引发姿势控制系统更为充分的调节反应。
结论。体质指数较低的漏斗胸患儿在接受微创矫形手术后,需采用个体化的康复治疗方案。该治疗策略旨在改善术后恢复过程,并促进姿势平衡的恢复与正常化。
作者简介
Igor Nikityuk
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729
SPIN 代码: 5901-2048
Yuriy Garkavenko
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov
Email: yurijgarkavenko@mail.ru
ORCID iD: 0000-0001-9661-8718
SPIN 代码: 7546-3080
MD, Dr. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg; Saint PetersburgDmitry Ryzhikov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: dryjikov@yahoo.com
ORCID iD: 0000-0002-7824-7412
SPIN 代码: 7983-4270
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgBahauddin Dolgiev
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: dr-b@bk.ru
ORCID iD: 0000-0003-2184-5304
SPIN 代码: 2348-4418
MD
俄罗斯联邦, Saint Petersburg参考
- Suehs CM, Molinari N, Bourdin A, et al. Change in cardiorespiratory parameters following surgical correction of pectus excavatum: protocol for the historical-prospective HeartSoar cohort. BMJ Open. 2023;13(6):e070891. doi: 10.1136/bmjopen-2022-070891 EDN: ZIOZHW
- Nishida T, Iida H, Ohmura K, et al. The usefulness of the open surgical technique of sternocostal elevation for asymmetric pectus excavatum: a retrospective study. J Thorac Dis. 2024;16(3):1996–2003. doi: 10.21037/jtd-23-1824 EDN: APZZMA
- Çelik S, Erşen E. Combined repair of upper sternal cleft and pectus excavatum in a child. Tex Heart Inst J. 2023;50(1):e217721. doi: 10.14503/THIJ-21-7721 EDN: CEBOKP
- Frari BD, Blank C, Sigl S, et al. The questionable benefit of pectus excavatum repair on cardiopulmonary function: a prospective study. Eur J Cardiothorac Surg. 2021;61(1):75–82. doi: 10.1093/ejcts/ezab296 EDN: TGEGQK
- Vega-Artiles AG, Pérez D, Martel O, et al. Stiffness reduction of the rib cage to perform a minimally invasive pectus excavatum repair: biomechanical evaluation. Interact Cardiovasc Thorac Surg. 2022;34(1):99–104. doi: 10.1093/icvts/ivab210 EDN: DCZUXW
- Brasiliense LB, Lazaro BC, Reyes PM, et al. Biomechanical contribution of the rib cage to thoracic stability. Spine. 2011;36(26):E1686–E1693. doi: 10.1097/BRS.0b013e318219ce84
- Jarosz M, Pawlak K, Jarosz W, et al. The effect of surgical repair of the chest on postural stability among patients with pectus excavatum. Sci Rep. 2024;14(1):45. doi: 10.1038/s41598-023-50645-9 EDN: NNGIVK
- Ku PX, Abu Osman NA, Yusof A, et al. Biomechanical evaluation of the relationship between postural control and body mass index. J Biomech. 2012;45(9):1638–1642. doi: 10.1016/j.jbiomech.2012.03.029 EDN: PLAMSX
- Jorgić BM, Đorđević SN, Hadžović MM, et al. The influence of body composition on sagittal plane posture among elementary school-aged children. Children. 2023;11(1):36. doi: 10.3390/children11010036 EDN: IEJQHT
- Turon-Skrzypinska A, Uździcki A, Przybylski T, et al. Assessment of selected anthropometric parameters influence on balance parameters in children. Medicina (Kaunas).2020;56(4):176. doi: 10.3390/medicina56040176 EDN: XAQCNB
- Glaubach N, Ben Hur D, Korytny A, et al. The association between low body-mass index and serious post-endoscopic adverse events. Dig Dis Sci. 2023;68(6):2180–2187. doi: 10.1007/s10620-023-07882-9 EDN: LYDLRP
- Tonegawa-Kuji R, Nakai M, Kanaoka K, et al. Impact of low body mass index on cardiac tamponade during catheter ablation for atrial fibrillation. JACC Clin Electrophysiol. 2023;9(2):200–208. doi: 10.1016/j.jacep.2022.08.025 EDN: FQVGHN
- Nuss D, Obermeyer RJ, Kelly RE Jr. Pectus excavatum from a pediatric surgeon’s perspective. Ann Cardiothorac Surg. 2016;5(5):493–500. doi: 10.21037/acs.2016.06.04
- Nikityuk IE, Garkavenko YE, Ryzhikov DV, et al. Features of vertical body balance in children with asymmetric pectus excavatum before and after its surgical correction. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(3):335–348. doi: 10.17816/PTORS633528 EDN: CSBATR
- Zuidema WP, van der Steeg AFW, Oosterhuis JWA, et al. Trends in the treatment of pectus excavatum in the Netherlands. Eur J Pediatr Surg. 2021;31(3):261–265. doi: 10.1055/s-0040-1712182 EDN: KYXCJC
- Oli R, Mishra JK, Srivastava GN, et al. Association of low body mass index with respiratory failure in chronic obstructive pulmonary disease. J Nepal Health Res Counc. 2021;19(1):135–139. doi: 10.33314/jnhrc.v19i1.3372 EDN: RWUAXJ
- Keys A, Fidanza F, Karvonen MJ, et al. Indices of relative weight and obesity. Int J Epidemiol. 2014;43(3):655–665. doi: 10.1093/ije/dyu058
- Park JW, Kweon M, Hong S. The influences of position and forced respiratory maneuvers on spinal stability muscles. J Phys Ther Sci. 2015;27(2):491–493. doi: 10.1589/jpts.27.491
- Wyszy´nska J, Podgórska-Bednarz J, Drzał-Grabiec J, et al. Analysis of relationship between the body mass composition and physical activity with body posture in children. BioMed Res Int. 2016;2016:1851670. doi: 10.1155/2016/1851670
- Rusek W, Baran J, Leszczak J, et al. Changes in children’s body composition and posture during puberty growth. Children. 2021;8(4):288. doi: 10.3390/children8040288 EDN: NCATEY
- Rusek W, Adamczyk M, Baran J, et al. Is there a link between balance and body mass composition in children and adolescents? Int J Environ Res Public Health. 2021;18(19):10449. doi: 10.3390/ijerph181910449 EDN: OLJKVZ
- Daemen JHT, Heuts S, Ardabili AR, et al. Development of prediction models for cardiac compression in pectus excavatum based on three-dimensional surface images. Semin Thorac Cardiovasc Surg. 2023;35(1):202–212. doi: 10.1053/j.semtcvs.2021.11.006 EDN: EISQXW
- Piermaier LM, Caspers S, Herold C, et al. Proprioceptors of the human pericardium. Basic Res Cardiol. 2024;119(6):1029–1043. doi: 10.1007/s00395-024-01075-9 EDN: PHGGCS
- Moon KM, Kim J, Seong Y, et al. Proprioception, the regulator of motor function. BMB Rep. 2021;54(8):393–402. doi: 10.5483/BMBRep.2021.54.8.052 EDN: BJKXDB
- Capunay C, Martinez-Ferro M, Carrascosa P, et al. Sternal torsion in pectus excavatum is related to cardiac compression and chest malformation indexes. J Pediatr Surg. 2020;55(4):619–624. doi: 10.1016/j.jpedsurg.2019.05.008 EDN: PCNDNM
- Nikityuk IE, Botsarova SA, Semenov MG, et al. Postural balance impairment of the trunk in adolescents with mesial ratio of dentition before and after surgical treatment in the presence and absence of congenital cervical spine abnormalities. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(4):473–486. doi: 10.17816/PTORS606640 EDN: FOTKBC
- Eldredge RS, Sabati A, Ochoa B, et al. Cardiopulmonary impact of the minimally invasive repair of pectus excavatum in pediatric patients: a prospective pilot study. J Pediatr Surg. 2025;60(4):162177. doi: 10.1016/j.jpedsurg.2025.162177
- Sandbrink KJ, Mamidanna P, Michaelis C, et al. Contrasting action and posture coding with hierarchical deep neural network models of proprioception. Elife. 2023;12:e81499. doi: 10.7554/eLife.81499 EDN: GYCTPV
- Liu Q, Wang W, Hong C, et al. Effect of minimally invasive repair of pectus excavatum on postoperative chest flatness, cardiopulmonary function, and bone metabolism indexes in children at different ages. Am J Transl Res. 2022;14(6):3955–3963.
- Tuthill JC, Azim E. Proprioception. Curr Biol. 2018;28(5):R194–R203. doi: 10.1016/j.cub.2018.01.064
- Media AS, Juhl-Olesen P, Christensen TD, et al. Cardiorespiratory fitness after correction of pectus excavatum: a systematic review with meta-analysis. Sci Rep. 2025;15(1):26282. doi: 10.1038/s41598-025-08038-7
- Wilson HC, Iannucci G. Pectus excavatum deformity and the heart: compression with consequence or shift of unclear significance? Pediatr Radiol. 2024;54(9):1473–1475. doi: 10.1007/s00247-024-05975-9 EDN: VNFVSC
- Janssen N, Daemen JHT, Franssen AJPM, et al. Raising the bar in the management of pectus excavatum. Transl Pediatr. 2023;12(6):1059–1062. doi: 10.21037/tp-23-236 EDN: YRTFOG
- Hebra A, Kelly RE, Ferro MM, et al. Life-threatening complications and mortality of minimally invasive pectus surgery. J Pediatr Surg. 2018;53(4):728–732. doi: 10.1016/j.jpedsurg.2017.07.020
- Media AS, Christensen TD, Katballe N, et al. Complication rates rise with age and Haller index in minimally invasive correction of pectus excavatum: a high-volume, single-center retrospective cohort study. J Thorac Cardiovasc Surg. 2024;168(3):699–711. doi: 10.1016/j.jtcvs.2024.01.047 EDN: YPCYWG
- Kar A, Baghai M, Hunt I. Reshaping the evidence for surgical correction of pectus excavatum using cardiopulmonary exercise testing. J Am Heart Assoc. 2022;11(7):e025273. doi: 10.1161/JAHA.122.025273 EDN: CLRGIR
- Scalise PN, Demehri FR. The management of pectus excavatum in pediatric patients: a narrative review. Transl Pediatr. 2023;12(2):208–220. doi: 10.21037/tp-22-361 EDN: DZZYZT
- De Blasiis P, Caravaggi P, Fullin A, et al. Postural stability and plantar pressure parameters in healthy subjects: variability, correlation analysis and differences under open and closed eye conditions. Front Bioeng Biotechnol. 2023;11:1198120. doi: 10.3389/fbioe.2023.1198120 EDN: SAORDY
- Fullin A, Caravaggi P, Picerno P, et al. Variability of postural stability and plantar pressure parameters in healthy subjects evaluated by a novel pressure plate. Int J Environ Res Public Health. 2022;19(5):2913. doi: 10.3390/ijerph19052913 EDN: THBBPO
- Alessandria M, Pivetta I, Kuvacic G, et al. Correlation of body parameters and age with foot arch index and stabilometric variables in physically active young males and females. Sports. 2025;13(9):324. doi: 10.3390/sports13090324
补充文件

