Comparative characteristics of vertical body balance in children with different body types and pectus excavatum before and after surgery

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: To achieve a comprehensive understanding of the multilevel mechanisms underlying organ and system function in children with pectus excavatum, thoracic biomechanics and whole-body biomechanics have been increasingly studied. This enables clinicians to gain a clearer understanding of the full diversity of adaptive responses of the patient’s body to deformity surgery.

AIM: This study aimed to evaluate changes in postural responses in children with asymmetric pectus excavatum during different stages of postoperative rehabilitation, depending on body mass index.

METHODS: Two groups of patients of both sexes aged 13–16 years with severe left-sided pectus excavatum underwent clinical, radiological, and stabilometric assessments. The first group consisted of 18 patients with an asthenic body type and a body mass index below 18.50 kg/m2. The second group comprised 15 normosthenic patients with a body mass index greater than 18.50 kg/m2 and less than 24.99 kg/m2. The exclusion criteria were as follows: overweight children; patients with right-sided or symmetric pectus excavatum; and those with other concomitant chest and thoracolumbar deformities and anomalies. All patients underwent minimally invasive reconstructive surgery to correct anterior chest wall deformity. The parameters of the whole-body center of pressure displacement and contralateral foot pressure centers were analyzed preoperatively and postoperatively (mean follow-up, 2 years). The results were compared with data from 20 healthy age-matched children with normal body mass index.

RESULTS: Preoperative stabilometric parameters indicated impaired vertical balance in both groups, with more pronounced disturbances in patients with asthenia. In all patients, compression of the pericardium by the deformed sternum was assumed to alter the characteristics of neural signals originating from its proprioceptors, thereby inducing changes in the postural control system. In addition, differences in postural strategies were identified between the patient groups, which presumably affected the stability of their vertical balance. After corrective surgery, normosthenic patients demonstrated greater improvement in vertical body balance compared with patients with asthenia. The achieved balance function was 83% and 78%, respectively (p = 0.047), which may be explained by variability in the adaptive capacity of the postural control system in patients with different body mass indexes. Following relief of pericardial compression, changes in the spectrum of proprioceptive signals in normosthenic patients may have led to more adequate postural system responses compared with asthenic patients.

CONCLUSION: Patients with pectus excavatum and low body mass index require a personalized rehabilitation strategy after minimally invasive surgery for deformity correction. This approach is intended to facilitate postoperative recovery in children and promote normalization of their postural balance.

About the authors

Igor E. Nikityuk

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: femtotech@mail.ru
ORCID iD: 0000-0001-5546-2729
SPIN-code: 5901-2048

MD, Cand. Sci. (Medicine)
 
Russian Federation, Saint Petersburg

Yuriy E. Garkavenko

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

Email: yurijgarkavenko@mail.ru
ORCID iD: 0000-0001-9661-8718
SPIN-code: 7546-3080

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Dmitry V. Ryzhikov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: dryjikov@yahoo.com
ORCID iD: 0000-0002-7824-7412
SPIN-code: 7983-4270

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Bahauddin H. Dolgiev

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: dr-b@bk.ru
ORCID iD: 0000-0003-2184-5304
SPIN-code: 2348-4418

MD

Russian Federation, Saint Petersburg

References

  1. Suehs CM, Molinari N, Bourdin A, et al. Change in cardiorespiratory parameters following surgical correction of pectus excavatum: protocol for the historical-prospective HeartSoar cohort. BMJ Open. 2023;13(6):e070891. doi: 10.1136/bmjopen-2022-070891 EDN: ZIOZHW
  2. Nishida T, Iida H, Ohmura K, et al. The usefulness of the open surgical technique of sternocostal elevation for asymmetric pectus excavatum: a retrospective study. J Thorac Dis. 2024;16(3):1996–2003. doi: 10.21037/jtd-23-1824 EDN: APZZMA
  3. Çelik S, Erşen E. Combined repair of upper sternal cleft and pectus excavatum in a child. Tex Heart Inst J. 2023;50(1):e217721. doi: 10.14503/THIJ-21-7721 EDN: CEBOKP
  4. Frari BD, Blank C, Sigl S, et al. The questionable benefit of pectus excavatum repair on cardiopulmonary function: a prospective study. Eur J Cardiothorac Surg. 2021;61(1):75–82. doi: 10.1093/ejcts/ezab296 EDN: TGEGQK
  5. Vega-Artiles AG, Pérez D, Martel O, et al. Stiffness reduction of the rib cage to perform a minimally invasive pectus excavatum repair: biomechanical evaluation. Interact Cardiovasc Thorac Surg. 2022;34(1):99–104. doi: 10.1093/icvts/ivab210 EDN: DCZUXW
  6. Brasiliense LB, Lazaro BC, Reyes PM, et al. Biomechanical contribution of the rib cage to thoracic stability. Spine. 2011;36(26):E1686–E1693. doi: 10.1097/BRS.0b013e318219ce84
  7. Jarosz M, Pawlak K, Jarosz W, et al. The effect of surgical repair of the chest on postural stability among patients with pectus excavatum. Sci Rep. 2024;14(1):45. doi: 10.1038/s41598-023-50645-9 EDN: NNGIVK
  8. Ku PX, Abu Osman NA, Yusof A, et al. Biomechanical evaluation of the relationship between postural control and body mass index. J Biomech. 2012;45(9):1638–1642. doi: 10.1016/j.jbiomech.2012.03.029 EDN: PLAMSX
  9. Jorgić BM, Đorđević SN, Hadžović MM, et al. The influence of body composition on sagittal plane posture among elementary school-aged children. Children. 2023;11(1):36. doi: 10.3390/children11010036 EDN: IEJQHT
  10. Turon-Skrzypinska A, Uździcki A, Przybylski T, et al. Assessment of selected anthropometric parameters influence on balance parameters in children. Medicina (Kaunas).2020;56(4):176. doi: 10.3390/medicina56040176 EDN: XAQCNB
  11. Glaubach N, Ben Hur D, Korytny A, et al. The association between low body-mass index and serious post-endoscopic adverse events. Dig Dis Sci. 2023;68(6):2180–2187. doi: 10.1007/s10620-023-07882-9 EDN: LYDLRP
  12. Tonegawa-Kuji R, Nakai M, Kanaoka K, et al. Impact of low body mass index on cardiac tamponade during catheter ablation for atrial fibrillation. JACC Clin Electrophysiol. 2023;9(2):200–208. doi: 10.1016/j.jacep.2022.08.025 EDN: FQVGHN
  13. Nuss D, Obermeyer RJ, Kelly RE Jr. Pectus excavatum from a pediatric surgeon’s perspective. Ann Cardiothorac Surg. 2016;5(5):493–500. doi: 10.21037/acs.2016.06.04
  14. Nikityuk IE, Garkavenko YE, Ryzhikov DV, et al. Features of vertical body balance in children with asymmetric pectus excavatum before and after its surgical correction. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2024;12(3):335–348. doi: 10.17816/PTORS633528 EDN: CSBATR
  15. Zuidema WP, van der Steeg AFW, Oosterhuis JWA, et al. Trends in the treatment of pectus excavatum in the Netherlands. Eur J Pediatr Surg. 2021;31(3):261–265. doi: 10.1055/s-0040-1712182 EDN: KYXCJC
  16. Oli R, Mishra JK, Srivastava GN, et al. Association of low body mass index with respiratory failure in chronic obstructive pulmonary disease. J Nepal Health Res Counc. 2021;19(1):135–139. doi: 10.33314/jnhrc.v19i1.3372 EDN: RWUAXJ
  17. Keys A, Fidanza F, Karvonen MJ, et al. Indices of relative weight and obesity. Int J Epidemiol. 2014;43(3):655–665. doi: 10.1093/ije/dyu058
  18. Park JW, Kweon M, Hong S. The influences of position and forced respiratory maneuvers on spinal stability muscles. J Phys Ther Sci. 2015;27(2):491–493. doi: 10.1589/jpts.27.491
  19. Wyszy´nska J, Podgórska-Bednarz J, Drzał-Grabiec J, et al. Analysis of relationship between the body mass composition and physical activity with body posture in children. BioMed Res Int. 2016;2016:1851670. doi: 10.1155/2016/1851670
  20. Rusek W, Baran J, Leszczak J, et al. Changes in children’s body composition and posture during puberty growth. Children. 2021;8(4):288. doi: 10.3390/children8040288 EDN: NCATEY
  21. Rusek W, Adamczyk M, Baran J, et al. Is there a link between balance and body mass composition in children and adolescents? Int J Environ Res Public Health. 2021;18(19):10449. doi: 10.3390/ijerph181910449 EDN: OLJKVZ
  22. Daemen JHT, Heuts S, Ardabili AR, et al. Development of prediction models for cardiac compression in pectus excavatum based on three-dimensional surface images. Semin Thorac Cardiovasc Surg. 2023;35(1):202–212. doi: 10.1053/j.semtcvs.2021.11.006 EDN: EISQXW
  23. Piermaier LM, Caspers S, Herold C, et al. Proprioceptors of the human pericardium. Basic Res Cardiol. 2024;119(6):1029–1043. doi: 10.1007/s00395-024-01075-9 EDN: PHGGCS
  24. Moon KM, Kim J, Seong Y, et al. Proprioception, the regulator of motor function. BMB Rep. 2021;54(8):393–402. doi: 10.5483/BMBRep.2021.54.8.052 EDN: BJKXDB
  25. Capunay C, Martinez-Ferro M, Carrascosa P, et al. Sternal torsion in pectus excavatum is related to cardiac compression and chest malformation indexes. J Pediatr Surg. 2020;55(4):619–624. doi: 10.1016/j.jpedsurg.2019.05.008 EDN: PCNDNM
  26. Nikityuk IE, Botsarova SA, Semenov MG, et al. Postural balance impairment of the trunk in adolescents with mesial ratio of dentition before and after surgical treatment in the presence and absence of congenital cervical spine abnormalities. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(4):473–486. doi: 10.17816/PTORS606640 EDN: FOTKBC
  27. Eldredge RS, Sabati A, Ochoa B, et al. Cardiopulmonary impact of the minimally invasive repair of pectus excavatum in pediatric patients: a prospective pilot study. J Pediatr Surg. 2025;60(4):162177. doi: 10.1016/j.jpedsurg.2025.162177
  28. Sandbrink KJ, Mamidanna P, Michaelis C, et al. Contrasting action and posture coding with hierarchical deep neural network models of proprioception. Elife. 2023;12:e81499. doi: 10.7554/eLife.81499 EDN: GYCTPV
  29. Liu Q, Wang W, Hong C, et al. Effect of minimally invasive repair of pectus excavatum on postoperative chest flatness, cardiopulmonary function, and bone metabolism indexes in children at different ages. Am J Transl Res. 2022;14(6):3955–3963.
  30. Tuthill JC, Azim E. Proprioception. Curr Biol. 2018;28(5):R194–R203. doi: 10.1016/j.cub.2018.01.064
  31. Media AS, Juhl-Olesen P, Christensen TD, et al. Cardiorespiratory fitness after correction of pectus excavatum: a systematic review with meta-analysis. Sci Rep. 2025;15(1):26282. doi: 10.1038/s41598-025-08038-7
  32. Wilson HC, Iannucci G. Pectus excavatum deformity and the heart: compression with consequence or shift of unclear significance? Pediatr Radiol. 2024;54(9):1473–1475. doi: 10.1007/s00247-024-05975-9 EDN: VNFVSC
  33. Janssen N, Daemen JHT, Franssen AJPM, et al. Raising the bar in the management of pectus excavatum. Transl Pediatr. 2023;12(6):1059–1062. doi: 10.21037/tp-23-236 EDN: YRTFOG
  34. Hebra A, Kelly RE, Ferro MM, et al. Life-threatening complications and mortality of minimally invasive pectus surgery. J Pediatr Surg. 2018;53(4):728–732. doi: 10.1016/j.jpedsurg.2017.07.020
  35. Media AS, Christensen TD, Katballe N, et al. Complication rates rise with age and Haller index in minimally invasive correction of pectus excavatum: a high-volume, single-center retrospective cohort study. J Thorac Cardiovasc Surg. 2024;168(3):699–711. doi: 10.1016/j.jtcvs.2024.01.047 EDN: YPCYWG
  36. Kar A, Baghai M, Hunt I. Reshaping the evidence for surgical correction of pectus excavatum using cardiopulmonary exercise testing. J Am Heart Assoc. 2022;11(7):e025273. doi: 10.1161/JAHA.122.025273 EDN: CLRGIR
  37. Scalise PN, Demehri FR. The management of pectus excavatum in pediatric patients: a narrative review. Transl Pediatr. 2023;12(2):208–220. doi: 10.21037/tp-22-361 EDN: DZZYZT
  38. De Blasiis P, Caravaggi P, Fullin A, et al. Postural stability and plantar pressure parameters in healthy subjects: variability, correlation analysis and differences under open and closed eye conditions. Front Bioeng Biotechnol. 2023;11:1198120. doi: 10.3389/fbioe.2023.1198120 EDN: SAORDY
  39. Fullin A, Caravaggi P, Picerno P, et al. Variability of postural stability and plantar pressure parameters in healthy subjects evaluated by a novel pressure plate. Int J Environ Res Public Health. 2022;19(5):2913. doi: 10.3390/ijerph19052913 EDN: THBBPO
  40. Alessandria M, Pivetta I, Kuvacic G, et al. Correlation of body parameters and age with foot arch index and stabilometric variables in physically active young males and females. Sports. 2025;13(9):324. doi: 10.3390/sports13090324

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).