小儿脑性瘫痪患者康复技术手段种类及使用频率的动态分析
- 作者: Koltsov A.A.1, Dzhomardly E.I.1
-
隶属关系:
- Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht
- 期: 卷 8, 编号 2 (2020)
- 页面: 169-178
- 栏目: Original Study Article
- URL: https://journals.rcsi.science/turner/article/view/18953
- DOI: https://doi.org/10.17816/PTORS18953
- ID: 18953
如何引用文章
详细
论证:到目前为止,脑瘫是儿科人群中最常见的神经矫形疾病。痉挛性脑瘫的特点之一是继发性矫形并发症的形成,为了纠正这些并发症,与其他方法(手术、肉毒杆菌治疗等)一起,使用康复技术
手段,尤其是矫形器。
目的是根据患者的整体运动功能水平,评估技术康复工具的数量以及其在痉挛性脑瘫患者中的使
用频率。
材料与方法。对214名于2017年至2019年在临床接受治疗的痉挛性脑瘫儿童的父母进行了前瞻性分析。根据GMFCS全球运动功能分类将患者分为五组。统计显著性固定在误差概率水平p < 0.05。统计数据处理使用 Statistica 10和Excel应用软件包。
结果。研究结果显示,在统计调查前一年(第I期)与在统计调查前半年(第II期)所使用的康复技术工具数目有显著差异。结果表明,大多数患者会反复选择矫形鞋,而很少选择三脚拐杖助行器下肢和躯干的装置。从康复技术手段来看,患者拒绝接受治疗的主要原因可以分为六类。
结论。在调查前的最后6个月,在病史中使用康复技术手段的频率有显著的下降。患者通常使用
矫形鞋。在所有功能矫形器中,髋关节矫形器最常被重复使用,而下肢和躯干三脚拐杖助行器使用频率最低。大多数时候,拒绝重用康复的技术手段等因素造成的消极态度儿童装置,家庭困难,装置存在设计错误,在病人的个人康复和心理社会发展计划中没有适当的预约。与此同时,只有六分之一的患者在病情上的积极或消极动态影响了康复技术手段的使用规律。
作者简介
Andrey Koltsov
Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht
Email: katandr2007@yandex.ru
ORCID iD: 0000-0002-0862-8826
MD, PhD, Orthopedic and Trauma Surgeon, Head of the First Child’s Traumatology-Orthopedic Department
俄罗斯联邦, 195067, Saint-Petersburg, Bestugevskaya street., 50Elnur Dzhomardly
Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht
编辑信件的主要联系方式.
Email: mamedov.ie@yandex.ru
ORCID iD: 0000-0002-0281-3262
SPIN 代码: 5853-0260
MD, orthopedic surgeon, PhD student
俄罗斯联邦, 195067, Saint-Petersburg, Bestugevskaya street., 50参考
- Bar-On L, Aertbelien E, Molenaers G, Desloovere K. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy. PLoS One. 2014;9(3):e91759. https://doi.org/10.1371/journal.pone.0091759.
- Flemban A, Elsayed W. Effect of combined rehabilitation program with botulinum toxin type A injections on gross motor function scores in children with spastic cerebral palsy. J Phys Ther Sci. 2018;30(7):902-905. https://doi.org/10.1589/jpts.30.902.
- Zhou JY, Lowe E, Cahill-Rowley K, et al. Influence of impaired selective motor control on gait in children with cerebral palsy. J Child Orthop. 2019;13(1):73-81. https://doi.org/10.1302/1863-2548.13.180013.
- Munger ME, Chen BP, MacWilliams BA, et al. Comparing the effects of two spasticity management strategies on the long-term outcomes of individuals with bilateral spastic cerebral palsy: a multicentre cohort study protocol. BMJ Open. 2019;9(6):e027486. https://doi.org/10.1136/bmjopen-2018-027486.
- Church C, Lennon N, Alton R, et al. Longitudinal change in foot posture in children with cerebral palsy. J Child Orthop. 2017;11(3):229-236. https://doi.org/10.1302/1863-2548.11.160197.
- Zhang H, Huo H, Hao Z, et al. Effect of appropriate assistive device on rehabilitation of children with cerebral palsy under ICF framework. Int J Clin Exp Med. 2018;11(11):12259-12263.
- Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x.
- Contini BG, Bergamini E, Alvini M, et al. A wearable gait analysis protocol to support the choice of the appropriate ankle-foot orthosis: A comparative assessment in children with cerebral palsy. Clin Biomech (Bristol, Avon). 2019;70:177-185. https://doi.org/10.1016/j.clinbiomech.2019.08.009.
- Totah D, Menon M, Jones-Hershinow C, et al. The impact of ankle-foot orthosis stiffness on gait: A systematic literature review. Gait Posture. 2019;69:101-111. https://doi.org/10.1016/j.gaitpost.2019.01.020.
- Ries AJ, Schwartz MH. Ground reaction and solid ankle-foot orthoses are equivalent for the correction of crouch gait in children with cerebral palsy. Dev Med Child Neurol. 2019;61(2):219-225. https://doi.org/10.1111/dmcn.13999.
- Белова Л.А., Бекк Н.В., Захожая Т.С., и др. Технологические решения проектирования ортопедической обуви с учетом биомеханики движений // Вестник технологического университета. – 2015. – Т. 18. – № 5. – С. 112–114. [Belova LA, Bekk NV, Zakhodzhaya TS. Tekhnologicheskie resheniya proektirovaniya ortopedicheskoy obuvi s uchetom biomekhaniki dvizheniy. Vestnik tekhnologicheskogo universiteta. 2015;18(5):112-114. (In Russ.)]
- Lapina T, Bekk N, Belova L. Features customization of orthopedic shoes for children with cerebral palsy. Theoretical & Applied Science. 2018;68(12):117-121. https://doi.org/10.15863/tas.2018.12.68.21.
- Tardieu C, Lespargot A, Tabary C, Bret MD. For how long must the soleus muscle be stretched each day to prevent contracture? Dev Med Child Neurol. 1988;30(1):3-10. https://doi.org/10.1111/j.1469-8749.1988.tb04720.x.
- Molenaers G, Desloovere K, De Cat J, et al. Single event multilevel botulinum toxin type A treatment and surgery: similarities and differences. Eur J Neurol. 2001;8 Suppl 5:88-97. https://doi.org/10.1046/j.1468-1331.2001.00041.x.
- Gage JR. The treatment of gait problems in cerebral palsy. Cambridge: Cambridge University Press; 2004. P. 423.
- Desloovere K, Molenaers G, De Cat J, et al. Motor function following multilevel botulinum toxin type A treatment in children with cerebral palsy. Dev Med Child Neurol. 2007;49(1):56-61. https://doi.org/10.1017/s001216220700014x.x.
- Семенова К.А. Лечение двигательных расстройств при детских церебральных параличах. – М.: Медицина, 1976. – 185 с. [Semenova KA. Lechenie dvigatel’nykh rasstroystv pri detskikh tserebral’nykh paralichakh. Moscow: Meditsina; 1976. 185 p. (In Russ.)]
- Willoughby K, Ang SG, Thomason P, Graham HK. The impact of botulinum toxin A and abduction bracing on long-term hip development in children with cerebral palsy. Dev Med Child Neurol. 2012;54(8):743-747. https://doi.org/10.1111/j.1469-8749.2012.04340.x.
- Shore BJ, Yu X, Desai S, et al. Adductor surgery to prevent hip displacement in children with cerebral palsy: the predictive role of the Gross Motor Function Classification System. J Bone Joint Surg Am. 2012;94(4):326-334. https://doi.org/10.2106/JBJS.J.02003.
- Kusumoto Y, Matsuda T, Fujii K, et al. Effects of an underwear-type hip abduction orthosis on sitting balance and sit-to-stand activities in children with spastic cerebral palsy. J Phys Ther Sci. 2018;30(10):1301-1304. https://doi.org/10.1589/jpts.30.1301.
- Bennett BC, Russell SD, Abel MF. The effects of ankle foot orthoses on energy recovery and work during gait in children with cerebral palsy. Clin Biomech (Bristol, Avon). 2012;27(3):287-291. https://doi.org/10.1016/ j.clinbiomech.2011.09.005.
- Rha DW, Kim DJ, Park ES. Effect of hinged ankle-foot orthoses on standing balance control in children with bilateral spastic cerebral palsy. Yonsei Med J. 2010;51(5):746-752. https://doi.org/10.3349/ymj.2010.51.5.746.
- Goodwin J, Colver A, Basu A, et al. Understanding frames: A UK survey of parents and professionals regarding the use of standing frames for children with cerebral palsy. Child Care Health Dev. 2018;44(2):195-202. https://doi.org/10.1111/cch.12505.
- Gericke T. Postural management for children with cerebral palsy: consensus statement. Dev Med Child Neurol. 2006;48(4):244. https://doi.org/10.1017/S0012162206000685.
- Bush S, Daniels N, Caulton J, et al. Guidance on assisted standing for children with cerebral palsy. APCP Journal. 2010;(2):3-10.
- Lyons EA, Jones DE, Swallow VM, Chandler C. An exploration of comfort and discomfort amongst children and young people with intellectual disabilities who depend on postural management equipment. J Appl Res Intellect Disabil. 2017;30(4):727-742. https://doi.org/10.1111/jar.12267.
- Hill S, Goldsmith L. Mobility, posture and comfort. Oxford: Wiley-Blackwell; 2009. P. 328–347.
- Palisano RJ, Shimmell LJ, Stewart D, et al. Mobility experiences of adolescents with cerebral palsy. Phys Occup Ther Pediatr. 2009;29(2):133-153. https://doi.org/10.1080/01942630902784746.
- Pountney TE, Mandy A, Green E, Gard PR. Hip subluxation and dislocation in cerebral palsy — a prospective study on the effectiveness of postural management programmes. Physiother Res Int. 2009;14(2):116-127. https://doi.org/10.1002/pri.434.
补充文件
