Video-analysis of the effect of different types of adapted shoes on knee adduction moment

Cover Page

Cite item

Abstract

Background. The effect of different footwear profiles on knee adduction moment have not been fully studied.

Methods. Fifteen healthy volunteer subjects, age 25.3 (±2.73), undertook a series of gait laboratory trials with adapted shoes. Kinematic and kinetic data were collect using 16 Oqus 3+ cameras and the walking speed was controlled using timing gates. High street shoes were adapted to include five different heel heights (varying from a 1.5 cm to 5.5 cm heels), two heel profile conditions (curved and semi-curved heels), three varying apex angles (10, 15, and 20 degrees), and barefoot and 3CR footwear conditions. The baseline shoe had no heel curve, a heel height of 3.5cm, an apex position of 62.5% of the shoe length, an apex angle of 15 deg, and a rigid forepart of the shoe.

Results. The shoe with 5.5 cm heel height significantly increased the mean knee adduction moment during 50%–100% of the stance phase compared to the 1.5 cm heel (p = 0.008). The high heel shoe also significantly increased knee adduction impulse (area under the curve) versus the 1.5, 2.5, and 3.5 cm heels, and the 10° toe angle and barefoot condition. Ten degrees of toe angle reduced mean knee adduction moment during 0%–50% of the stance phase versus 20° and significantly reduced mean knee adduction moment during the late stance phase versus 15° and 20° toe angle footwear conditions. Walking with the curved heel for the healthy subjects increased mean knee adduction moment during 0%–50% of the stance phase compared to the heel without curvature (p < 0.0009).

Conclusion. Further study is required to investigate those changes in patients with high risk of knee osteoarthritis.

About the authors

Andrey Yu. Aksenov

Saint Petersburg Electrotechnical University LETI Faculty of Information Measurement and Biotechnical Systems Department of Bioengineering Systems

Author for correspondence.
Email: a.aksenov@hotmail.com

PhD (Lead author)

Russian Federation

Tatiana A. Klishkovskaya

Saint Petersburg Electrotechnical University LETI Faculty of Information Measurement and Biotechnical Systems Department of Bioengineering Systems

Email: tatianaklishkov@mail.ru

BSc

Russian Federation

References

  1. Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991-94. J Rheumatol. 2006;33(11):2271-9.
  2. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bulletin of the World Health Organization. 2003;81(9):646-56.
  3. Бадокин В.В. Остеоартроз коленного сустава: клиника, диагностика, лечение // Современная ревматология. – 2013. – № 3. – С. 70–75. [Badokin VV. Knee osteoarthrosis: Clinical presentation, diagnosis, treatment. Sovremennaya revmatologiya. 2013;(3):70-75. (In Russ.)] doi: 10.14412/1996-7012-2013-277.
  4. Hodges PW, van den Hoorn W, Wrigley TV, et al. Increased duration of co-contraction of medial knee muscles is associated with greater progression of knee osteoarthritis. Manual Therapy. 2016;21:151-8. doi: 10.1016/j.math.2015.07.004.
  5. Arazpour M, Hutchins SW, Bani MA, et al. The influence of a bespoke unloader knee brace on gait in medial compartment osteoarthritis: A pilot study. Prosthetics and Orthotics International. 2014;38(5):379-86. doi: 10.1177/0309364613504780.
  6. Resende RA, Kirkwood RN, Deluzio KJ, et al. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait. Clinical Biomechanics. 2016;34:30-7. doi: 10.1016/j.clinbiomech.2016.03.005.
  7. O’Connell M, Farrokhi S, Fitzgerald GK. The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis. Clinical Biomechanics. 2016;31:40-6. doi: 10.1016/j.clinbiomech.2015.10.003.
  8. Saxon L, Finch C, Bass S. Sports participation, sports injuries and osteoarthritis: implications for prevention. Sports Medicine. 1999;28(2):123-35. doi: 10.2165/00007256-199928020-00005.
  9. Felson DT. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage. 2013;21(1):10-5. doi: 10.1016/j.joca.2012.09.012.
  10. Chang AH, Moisio KC, Chmiel JS, et al. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage. 2015;23(7):1099-106. doi: 10.1016/j.joca.2015.02.005.
  11. Hurwitz DE, Ryals AB, Case JP, et al. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J Orthop Res. 2002;20(1):101-7. doi: 10.1016/s0736-0266(01)00081-x.
  12. Foroughi N, Smith R, Vanwanseele B. The association of external knee adduction moment with biomechanical variables in osteoarthritis: a systematic review. The Knee. 2009;16(5):303-9. doi: 10.1016/j.knee.2008.12.007.
  13. Henriksen M, Creaby MW, Lund H, et al. Is there a causal link between knee loading and knee osteoarthritis progression? A systematic review and meta-analysis of cohort studies and randomised trials. BMJ Open. 2014;4(7). doi: 10.1136/bmjopen-2014-005368.
  14. Arnold JB. Lateral wedge insoles for people with medial knee osteoarthritis: one size fits all, some or none? Osteoarthritis and Cartilage. 2016;24(2):193-5. doi: 10.1016/j.joca.2015.09.016.
  15. Ferreira GE, Robinson CC, Wiebusch M, et al. The effect of exercise therapy on knee adduction moment in individuals with knee osteoarthritis: A systematic review. Clinical Biomechanics. 2015;30(6):521-7. doi: 10.1016/j.clinbiomech.2015.03.028.
  16. Chapman GJ, Parkes MJ, Forsythe L, et al. Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial. Osteoarthritis Cartilage. 2015;23(8):1316-22. doi: 10.1016/j.joca.2015.02.164.
  17. Duivenvoorden T, van Raaij TM, Horemans HL, et al. Do laterally wedged insoles or valgus braces unload the medial compartment of the knee in patients with osteoarthritis? Clin Orthop Relat Res. 2015;473(1):265-74. doi: 10.1007/s11999-014-3947-5.
  18. Kang JW, Park HS, Na CK, et al. Immediate coronal plane kinetic effects of novel lateral-offset sole shoes and lateral-wedge insole shoes in healthy individuals. Orthopedics. 2013;36(2):e165-71. doi: 10.3928/01477447-20130122-18.
  19. National Clinical Guideline C. National Institute for Health and Clinical Excellence: Guidance. Osteoarthritis: Care and Management in Adults. London: National Institute for Health and Care Excellence (UK). Copyright (c) National Clinical Guideline Centre, 2014; 2014.
  20. Аксенов А.Ю. Комплексная инструментальная оценка функционального состояния нижних конечностей и коррекция их нарушений // Биотехносфера. – 2015. – № 4. – C. 31–37. [Aksenov AYu. The effect of varying heel height rocker soles on lower limbs joint kinematics, kinetics and muscle function during walking. Biotekhnosfera. 2015;(4):31-7. (In Russ.)]
  21. Li JX, Hong Y. Kinematic and Electromyographic Analysis of the Trunk and Lower Limbs During Walking in Negative-Heeled Shoes. J Am Podiatr Med Assoc. 2007;97(6):447-56. doi: http://dx.doi.org/10.7547/0970447.
  22. Romkes J, Rudmann C, Brunner R. Changes in gait and EMG when walking with the Masai Barefoot Technique. Clinical Biomechanics. 2006;21(1):75-81. doi: http://dx.doi.org/10.1016/j.clinbiomech.2005.08.003.
  23. Stefanyshyn DJ, Nigg BM, Fisher V, et al. The influence of high heeled shoes on kinematics, kinetics, and muscle EMG of normal female gait. Journal of Applied Biomechanics. 2000;16(3):309-19. doi: http://dx.doi.org/10.1123/jab.16.3.309.
  24. Mika A, Oleksy Ł, Mika P, et al. The influence of heel height on lower extremity kinematics and leg muscle activity during gait in young and middle-aged women. Gait & Posture. 2012;35(4):677-80. doi: 10.1016/j.gaitpost.2011.12.001.
  25. Hutchins S, Bowker P, Geary N, Richards J. The biomechanics and clinical efficacy of footwear adapted with rocker profiles — Evidence in the literature. The Foot. 2009;19(3):165-70. doi: 10.1016/j.foot.2009.01.001.
  26. Aksenov A. An investigation into the relationship between rocker sole designs and alteration to lower limb kinetics, kinematics and muscle function during adult gait. Manchester: University of Salford; 2014.
  27. Hutchins SW, Lawrence G, Blair S, et al. Use of a three-curved rocker sole shoe modification to improve intermittent claudication calf pain — a pilot study. J Vasc Nurs. 2012;30(1):11-20. doi: 10.1016/j.jvn.2011.11.003.
  28. Смирнова Л.М., Никулина С.Е. Игнорирование фактора скорости локомоции как причина снижения точности динамоплантографического исследования // Биомедицинская радиоэлектроника. – 2010. – № 5. – C. 19–25. [Smirnova LM, Nikulina SE. Ignorirovanie faktora skorosti lokomotsii kak prichina snizheniya tochnosti dinamoplantograficheskogo issledovaniya. Biomeditsinskaya radioelektronika. 2010;(5):19-25. (In Russ.)]
  29. Chung M-J, Wang M-JJ. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait & Posture. 2010;31(1):131-5. doi: 10.1016/j.gaitpost.2009.09.013.
  30. Liengme BV. A Guide to Microsoft Excel 2007 for Scientists and Engineers. Boston: Academic Press; 2009. p. ix-x. doi: 10.1016/B978-012374623-8.50002-5
  31. Barkema DD, Derrick TR, Martin PE. Heel height affects lower extremity frontal plane joint moments during walking. Gait & Posture. 2012;35(3):483-8. doi: 10.1016/j.gaitpost.2011.11.013.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Aksenov A.Y., Klishkovskaya T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».