The role of Bruton's tyrosine kinase in pathogenesis of chronic spontaneous urticaria and the prospects for the use of new treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic spontaneous urticaria is a fairly common disease with an unpredictable course, burdensome symptoms and a significant negative impact on patients` quality of life. Despite the established stepwise approach to treatment with antihistamines in standard and increased dosages, anti-IgE therapy, there remains a portion of patients with unsatisfactory control of urticaria symptoms, with the need to develop drugs that target new therapeutic targets. Mast cells, basophils and B cells are key cells involved in the pathogenesis of urticaria; activation, differentiation, proliferation, cytokine secretion and degranulation in all three types of cells is regulated via Bruton's tyrosine kinase signalling pathway through FcεRI and BCR receptors respectively. Inhibition of Bruton's tyrosine kinase is being developed as a new therapeutic strategy for chronic spontaneous urticaria.

Here we present overview of the current understanding of chronic spontaneous urticarial`s pathogenesis, the role of Bruton's tyrosine kinase, the history of medical use of Bruton's tyrosine kinase inhibitors, as well as clinical data on the use of new Bruton's tyrosine kinase inhibitors in patients with chronic spontaneous urticaria who have not achieved adequate disease control with antihistamines.

About the authors

Elena S. Fedenko

National Research Center--Institute of Immunology Federal Medical-Biological Agency of Russia

Email: efedks@gmail.com
ORCID iD: 0000-0003-3358-5087
SPIN-code: 5012-7242

MD, Dr. Sci. (Med), Professor

Russian Federation, Moscow

Olga G. Elisyutina

National Research Center--Institute of Immunology Federal Medical-Biological Agency of Russia; Peoples’ Friendship University of Russia

Author for correspondence.
Email: el-olga@yandex.ru
ORCID iD: 0000-0002-4609-2591
SPIN-code: 9567-1894

MD, Dr. Sci. (Med)

Russian Federation, Moscow; Moscow

Natalia I. Ilina

National Research Center--Institute of Immunology Federal Medical-Biological Agency of Russia

Email: instimmun@yandex.ru
ORCID iD: 0000-0002-3556-969X
SPIN-code: 6715-5650

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA2LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73(7):1393–1414. EDN: YCCVNB doi: 10.1111/all.13397
  2. Gonçalo M, Gimenéz-Arnau A, Al-Ahmad M, et al. The global burden of chronic urticaria for the patient and society. Br J Dermatol. 2021;184(2):226–236. EDN: YLXKFV doi: 10.1111/bjd.19561
  3. Curto-Barredo L, Archilla LR, Vives GR, et al. Clinical features of chronic spontaneous urticarial that predict disease prognosis and refractoriness to standard treatment. Acta Derm Venereol. 2018;98(7):641–647. EDN: YJEFVJ doi: 10.2340/00015555-2941
  4. Melé-Ninot G, Serra-Baldrich E, Curto-Barredo L, et al. Definition of recurrent chronic spontaneous urticaria. Acta Derm Venereol. 2020;100(16):adv00267. doi: 10.2340/00015555-3633
  5. Maurer M, Abuzakouk M, Bérard F, et al. The burden of chronic spontaneous urticaria is substantial: Real-world evidence from ASSURE-CSU. Allergy. 2017;72(12):2005–2016. doi: 10.1111/all.13209
  6. Popova KY, Zaborova VA, Kurshev VV, et al. Clinical predictors of antihistamine resistance in patients with chronic spontaneous urticaria. Russ J Allergy. 2023;20(4):402–414. EDN: DIMFTH doi: 10.36691/RJA7951
  7. Guillén-Aguinaga S, Jáuregui Presa I, Aguinaga-Ontoso E, et al. Updosing nonsedating antihistamines in patients with chronic spontaneous urticaria: A systematic review and meta-analysis. Br J Dermatol. 2016;175(6):1153–1165. doi: 10.1111/bjd.14768
  8. Maurer M, Costa C, Gimenez Arnau A, et al. Antihistamine-resistant chronic spontaneous urticaria remains undertreated: 2-year data from the AWARE study. Clin Exp Allergy. 2020;50(10):1166–1175. EDN: ZTUTPO doi: 10.1111/cea.13716
  9. Kaplan A, Lebwohl M, Gimenez-Arnau AM, et al. Chronic spontaneous urticaria: Focus on pathophysiology to unlock treatment advances. Allergy. 2023;78(2):389–401. EDN: LFRXKZ doi: 10.1111/all.15603
  10. Konstantinou GN, Riedl MA, Valent P, et al. Urticaria and angioedema: Understanding complex pathomechanisms to facilitate patient communication, disease management, and future treatment. J Allergy Clin Immunol Pract. 2023;11(1):94–106. EDN: YUKJKQ doi: 10.1016/j.jaip.2022.11.006
  11. Kolkhir P, Gimenez-Arnau AM, Kulthanan K, et al. Urticaria. Nat Rev Dis Primers. 2022;8(1):61. doi: 10.1038/s41572-022-00389-z
  12. Alvarado D, Maurer M, Gedrich R, et al. The anti-KIT monoclonal antibody CDX-0159 induces profound and durable mast cell suppression in a healthy volunteer study. Allergy. 2022;77(8):2393–2403. EDN: KVXABO doi: 10.1111/all.15262
  13. Kolkhir P, Elieh-Ali-Komi D, Metz M, et al. Understanding human mast cells: Lesson from therapies for allergic and non-allergic diseases. Nat Rev Immunol. 2022;22(5):294–308. EDN: OETTCH doi: 10.1038/s41577-021-00622-y
  14. Asero R, Marzano AV, Ferrucci S, et al. Co-occurrence of IgE and IgG autoantibodies in patients with chronic spontaneous urticaria. Clin Exp Immunol. 2020;200(3):242–249. EDN: JEUSWQ doi: 10.1111/cei.13428
  15. Xiang YK, Kolkhir P, Scheffel J, et al. Most patients with autoimmune chronic spontaneous urticaria also have autoallergic urticaria, but not vice versa. J Allergy Clin Immunol Pract. 2023;11(8):2417–2425.e1. EDN: XNPDRK doi: 10.1016/j.jaip.2023.02.006
  16. Schmetzer O, Lakin E, Topal FA, et al. IL-24 is a common and specific autoantigen of IgE in patients with chronic spontaneous urticaria. J Allergy Clin Immunol. 2018;142(3):876–882. EDN: YFVOAX doi: 10.1016/j.jaci.2017.10.035
  17. Cugno M, Asero R, Ferrucci S, et al. Elevated IgE to tissue factor and thyroglobulin are abated by omalizumab in chronic spontaneous urticaria. Allergy. 2018;73(12):2408–2411. EDN: VHAZYR doi: 10.1111/all.13587
  18. Su H, Kolkhir P, Scheffel J, et al. One in five patients with chronic spontaneous urticaria has IgE to tissue transglutaminase 2. Allergy. 2023;78(9):2537–2539. EDN: JGBWHQ doi: 10.1111/all.15734
  19. Altrichter S, Peter HJ, Pisarevskaja D, et al. IgE mediated autoallergy against thyroid peroxidase: A novel pathomechanism of chronic spontaneous urticaria? PLoS One. 2011;6(4):e14794. doi: 10.1371/journal.pone.0014794
  20. Hide M, Francis DM, Grattan CE, et al. Autoantibodies against the high-affinity IgE receptor as a cause of histamine release in chronic urticaria. N Engl J Med. 1993;328(22):1599–1604. doi: 10.1056/NEJM199306033282204
  21. Niimi N, Francis DM, Kermani F, et al. Dermal mast cell activation by autoantibodies against the high affinity IgE receptor in chronic urticaria. J Invest Dermatol. 1996;106(5):1001–1006. doi: 10.1111/1523-1747.ep12338544
  22. Altrichter S, Zampeli V, Ellrich A, et al. IgM and IgA in addition to IgG autoantibodies against FcεRIα are frequent and associated with disease markers of chronic spontaneous urticaria. Allergy. 2020;75(12):3208–3215. EDN: KIJGPP doi: 10.1111/all.14412
  23. Jang JH, Moon J, Yang EM, et al. Detection of serum IgG autoantibodies to FcεRIα by ELISA in patients with chronic spontaneous urticaria. PLoS One. 2022;17(8):e0273415. EDN: LCLZXT doi: 10.1371/journal.pone.0273415
  24. Zhou B, Li J, Liu R, et al. The role of crosstalk of immune cells in pathogenesis of chronic spontaneous urticaria. Front Immunol. 2022;(13):879754. EDN: VARNXK doi: 10.3389/fimmu.2022.879754
  25. Borzova EY. New aspects of the pathophysiology of chronic urticaria. Russ J Allergy. 2012;9(5):3–9. EDN: PEIQIN doi: 10.36691/RJA671
  26. Gimėnez-Arnau AM, DeMontojoye L, Asero R, et al. The pathogenesis of chronic spontaneous urticaria: The role of infiltrating cells. J Allergy Clin Immunol Pract. 2021;9(6):2195–2208. EDN: KYPUGA doi: 10.1016/j.jaip.2021.03.033
  27. Kishimoto I, Ma N, Takimoto-Ito R, et al. Decreased peripheral basophil counts in urticaria and mouse model of oxazolone-induced hypersensitivity, the latter suggesting basopenia reflectingmigration to skin. Front Immunol. 2022;(13):1014924. EDN: TAYEIZ doi: 10.3389/fimmu.2022.1014924
  28. Grattan CE, Dawn G, Gibbs S, Francis DM. Blood basophil numbers in chronic ordinary urticaria and healthy controls: Diurnal variation, influence of loratadine and prednisolone and relationship to disease activity. Clin Exp Allergy. 2003;33(3):337–341. EDN: BEUGQH doi: 10.1046/j.1365-2222.2003.01589.x
  29. Oliver ET, Sterba PM, Saini SS. Interval shifts in basophil measures correlate with disease activity in chronic spontaneous urticaria. Allergy. 2015;70(5):601–603. doi: 10.1111/all.12578
  30. Kern F, Lichtenstein LM. Defective histamine release in chronic urticaria. J Clin Invest. 1976;57(5):1369–1377. doi: 10.1172/JCI108405
  31. Oda Y, Fukunaga A, Washio K, et al. Low responsiveness of basophils via FcεRI reflects disease activity in chronic spontaneous urticaria. J Allergy Clin Immunol Pract. 2019;7(8):2835–2844. EDN: YNSKBK doi: 10.1016/j.jaip.2019.05.020
  32. Lourenco FD, Azor MH, Santos JC, et al. Activated status of basophils in chronic urticaria leads to interleukin-3 hyper-responsiveness and enhancement of histamine release induced by anti-IgE stimulus. Br J Dermatol. 2008;158(5):979–986. doi: 10.1111/j.1365-2133.2008.08499.x
  33. Zuberbier T, Abdul Latiff AH, Abuzakouk M, et al. The international EAACI/GA2LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy. 2022;77(3):734–766. EDN: NEWKMD doi: 10.1111/all.15090
  34. Steinweg SA, Gaspari AA. Rituximab for the treatment of recalcitrant chronic autoimmune urticaria. J Drugs Dermatol. 2015;14(12):1387.
  35. Chakravarty SD, Yee AF, Paget SA. Rituximab successfully treats refractory chronic autoimmune urticaria caused by IgE receptor autoantibodies. J Allergy Clin Immunol. 2011;128(6):1354–1355. doi: 10.1016/j.jaci.2011.08.023
  36. Combalia A, Losno RA, Prieto-González S, Mascaró JM. Rituximab in refractory chronic spontaneous urticaria: An encouraging therapeutic approach. Skin Pharmacol Physiol. 2018;31(4):184–188. doi: 10.1159/000487402
  37. Mendes-Bastos P, Brasileiro A, Kolkhir P, et al. Bruton’s tyrosine kinase inhibition: An emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy. 2022;77(8):2355–2366. doi: 10.1111/all.15261
  38. Neys SF, Hendriks RW, Corneth OB. Targeting Bruton’s tyrosine kinase in inflammatory and autoimmune pathologies. Front Cell Dev Biol. 2021;(9):668131. doi: 10.3389/fcell.2021.668131
  39. Rip J, van der Ploeg EK, Hendriks RW, Corneth OB. The role of Bruton’s tyrosine kinase in immune cell signaling and systemic autoimmunity. Crit Rev Immunol. 2018;38(1):17–62. doi: 10.1615/CritRevImmunol.2018025184
  40. Smith CI, Baskin B, Humire-Greiff P, et al. Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol. 1994;152(2):557–565.
  41. Weber AN, Bittner Z, Liu X, et al. Bruton’s tyrosine kinase: An emerging key player in innate immunity. Front Immunol. 2017;(8):1454. doi: 10.3389/fimmu.2017.01454
  42. Carnero Contentti E, Correale J. Current perspectives: Evidence to date on BTK inhibitors in the management of multiple sclerosis. Drug Des Devel Ther. 2022;(16):3473–3490. doi: 10.2147/DDDT.S348129
  43. Zhu S, Gokhale S, Jung J, et al. Multifaceted immunomodulatory effects of the BTK inhibitors ibrutinib and acalabrutinib on different immune cell subsets-beyond B lymphocytes. Front Cell Dev Biol. 2021;(9):727531. EDN: MQEUZR doi: 10.3389/fcell.2021.727531
  44. Alu A, Lei H, Han X, et al. BTK inhibitors in the treatment of haematological malignancies and inflammatory diseases: Mechanisms and clinical studies. J Hematol Oncol. 2022;15(1):138. EDN: JLZNYD doi: 10.1186/s13045-022-01353-w
  45. Wahl MI, Fluckiger AC, Kato RM, et al. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors. Proc Natl Acad Sci USA. 1997;94(21):11526–11533. doi: 10.1073/pnas.94.21.11526
  46. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilon RI. Nature. 1999;402(6760, Suppl):B24–В30. doi: 10.1038/35037021
  47. Bradshaw JM. The Src, Syk, and Tec family kinases: Distinct types of molecular switches. Cell Signal. 2010;22(8):1175–1184. doi: 10.1016/j.cellsig.2010.03.001
  48. Rawlings DJ, Scharenberg AM, Park H, et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996;271(5250):822–825. doi: 10.1126/science.271.5250.822
  49. Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, et al. Bruton’s tyrosine kinase inhibitors (BTKIs): Review of preclinical studies and evaluation of clinical trials. Molecules. 2023;28(5):2400. doi: 10.3390/molecules28052400
  50. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57. doi: 10.1186/s12943-018-0779-z
  51. Satterthwaite AB, Li Z, Witte ON. Btk function in B cell development and response. Semin Immunol. 1998;10(4):309–316. doi: 10.1006/smim.1998.0123
  52. Khan WN, Sideras P, Rosen FS, Alt FW. The role of Bruton’s tyrosine kinase in B-cell development and function in mice and man. Ann NY Acad Sci. 1995;(764):27–38. doi: 10.1111/j.1749-6632.1995.tb55802.x
  53. McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease. Immunology. 2021;164(4):722–736. doi: 10.1111/imm.13416
  54. Rip J, de Bruijn MJ, Appelman MK, et al. Toll-like receptor signaling drives Btk-mediated autoimmune disease. Front Immunol. 2019;(10):95. doi: 10.3389/fimmu.2019.00095
  55. Kong W, Deng W, Sun Y, et al. Increased expression of Bruton’s tyrosine kinase in peripheral blood is associated with lupus nephritis. Clin Rheumatol. 2018;37(1):43–49. doi: 10.1007/s10067-017-3717-3
  56. Corneth OB, Verstappen GM, Paulissen SM, et al. Enhanced Bruton’s tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol. 2017;69(6):1313–1324. doi: 10.1002/art.40059
  57. Robak E, Robak T. Bruton’s kinase inhibitors for the treatment of immunological diseases: Current status and perspectives. J Clin Med. 2022;11(10):2807. doi: 10.3390/jcm11102807
  58. Hantschel O, Rix U, Schmidt U, et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci USA. 2007;104(33):13283–13288. EDN: MMRISH doi: 10.1073/pnas.0702654104
  59. Kneidinger M, Schmidt U, Rix U, et al. The effects of dasatinib on IgE receptor-dependent activation and histamine release in human basophils. Blood. 2008;111(6):3097–3107. doi: 10.1182/blood-2007-08-104372
  60. Kaptein A, de Bruin G, Emmelot-van Hoek M, et al. Potency and selectivity of BTK inhibitors in clinical development for B-cell malignancies. Blood. 2018;132(Suppl. 1):1871. doi: 10.1182/blood-2018-99-109973
  61. Regan JA, Cao Y, Dispenza MC, et al. Ibrutinib, a Bruton’s tyrosine kinase inhibitor used for treatment of lymphoproliferative disorders, eliminates both aeroallergen skin test and basophil activation test reactivity. J Allergy Clin Immunol. 2017;140(3):875–879. doi: 10.1016/j.jaci.2017.03.013
  62. Dispenza MC, Krier-Burris RA, Chhiba KD, et al. Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest. 2020;130(9):4759–4770. doi: 10.1172/JCI138448
  63. Ellmeier W, Abramova A, Schebesta A. Tec family kinases: Regulation of FcεRI-mediated mast-cell activation. FEBS J. 2011;278(12):1990–2000. doi: 10.1111/j.1742-4658.2011.08073.x
  64. Suresh R, Dunnam C, Vaidya D, et al. The BTK inhibitor acalabrutinib reduces or eliminates clinical reactivity during oral challenge to peanut in allergic adults. J Allergy Clin Immunol. 2023;151(2):AB221. doi: 10.1016/j.jaci.2022.12.688
  65. MacGlashan DJ, Honigberg LA, Smith A, et al. Inhibition of IgE-mediated secretion from human basophils with a highly selective Bruton’s tyrosine kinase, Btk, inhibitor. Int Immunopharmacol. 2011;11(4):475–479. doi: 10.1016/j.intimp.2010.12.018
  66. Smiljkovic D, Blatt K, Stefanzl G, et al. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils. Allergy. 2017;72(11):1666–1676. doi: 10.1111/all.13166
  67. Angst D, Gessier F, Janser P, et al. Discovery of LOU064 (remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase. J Med Chem. 2020;63(10):5102–5118. doi: 10.1021/acs.jmedchem.9b01916
  68. Pulz R, Angst D, Eichlisberger D, Cenni B. Remibrutinib, a novel Bruton’s tyrosine kinase inhibitor, exhibits improved target selectivity and potency in vitro. EPO0896. Poster presented at: 38th Congress of the European Committee for Treatment and Research of Multiple Sclerosis, October 26–28, 2022; Amsterdam, Netherlands; 2022.
  69. Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet. 2021;397(10277):892–901. doi: 10.1016/S0140-6736(21)00224-5
  70. Bender AT, Gardberg A, Pereira A, et al. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol. 2017;91(3):208–219. doi: 10.1124/mol.116.107037
  71. Crawford JJ, Johnson AR, Misner DL, et al. Discovery of GDC-0853: A potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J Med Chem. 2018;61(6):2227–2245. doi: 10.1021/acs.jmedchem.7b01712
  72. Langrish CL, Bradshaw JM, Francesco MR, et al. Preclinical efficacy and anti-inflammatory mechanisms of action of the Bruton tyrosine kinase inhibitor rilzabrutinib for immune-mediated disease. J Immunol. 2021;206(7):1454–1468. doi: 10.4049/jimmunol.2001130
  73. Kaul M, End P, Cabanski M, et al. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci. 2021;14(5):1756–1768. doi: 10.1111/cts.13005
  74. Herman AE, Chinn LW, Kotwal SG, et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton’s tyrosine kinase inhibitor. Clin Pharmacol Ther. 2018;103(6):1020–1028. doi: 10.1002/cpt.1056
  75. Metz M, Sussman G, Gagnon R, et al. Fenebrutinib in H(1) antihistamine-refractory chronic spontaneous urticaria: A randomized phase II trial. Nat Med. 2021;27(11):1961–1969. doi: 10.1038/s41591-021-01537-w
  76. Gimeno R, Ribas-Llauradó C, Pesque D, et al. Remibrutinib inhibits hives effector cells stimulated by serum from chronic urticarial patients independently of FcεR1 expression level and omalizumab clinical response. Clin Transl Allergy. 2023;13(3):e12227. EDN: NRBQGZ doi: 10.1002/clt2.12227
  77. Ucpinar S, Smith PF, Long L, et al. Rilzabrutinib, a reversible covalent Bruton’s tyrosine kinase inhibitor: Absorption, metabolism, excretion, and absolute bioavailability in healthy participants. Clin Transl Sci. 2023;16(7):1210–1219. doi: 10.1111/cts.13524
  78. Maurer M, Berger W, Gimėnez-Arnau A, et al. Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria. J Allergy Clin Immunol. 2022;150(6):1498–1506. doi: 10.1016/j.jaci.2022.08.027
  79. Jain V, Giménez-Arnau A, Hayama K, et al. Remibrutinib demonstrates favorable safety profile and sustained efficacy in chronic spontaneous urticaria over 52 weeks. J Allergy Clin Immunol. 2024;153(2):479–486.e4. doi: 10.1016/j.jaci.2023.10.007
  80. Carr W, Sitz K, Jain V, et al. Remibrutinib improves chronic spontaneous urticaria in patients irrespective of CU-index: Results from phase 2b study. Ann Allergy Asthma Immunol. 2022;129(Suppl. 5):S11. EDN: LSUIDJ doi: 10.1016/j.anai.2022.08.537
  81. Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007;357(19):1903–1915. doi: 10.1056/NEJMoa066092
  82. Katewa A, Wang Y, Hackney JA, et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNa-driven lupus nephritis. JCI Insight. 2017;2(7):e90111. doi: 10.1172/jci.insight.90111
  83. Cohen S, Tuckwell K, Katsumoto TR, et al. Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: A randomized, double-blind, phase II trial (ANDES study). Arthritis Rheumatol. 2020;72(9):1435–1446. EDN: XSWFJF doi: 10.1002/art.41275
  84. Isenberg D, Furie R, Jones NS, et al. Efficacy, safety, and pharmacodynamic effects of the Bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: Results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2021;73(10):1835–1846. doi: 10.1002/art.41811
  85. Bernstein JA, Maurer M, Saini SS. BTK signalling: A crucial link in the pathophysiology of chronic spontaneous urticaria. J Allergy Clin Immunol. 2024;153(5):1229–1240. EDN: HFXINM doi: 10.1016/j.jaci.2023.12.008
  86. Saini S, Giménez-Arnau A, Hide M, et al. Fast symptom improvement and favorable safety profile with remibrutinib in chronic spontaneous urticaria: REMIX-1/-2 studies. Ann Allergy Asthma Immunol. 2023;131(5):S230. doi: 10.1016/j.anai.2023.10.019
  87. Mlynek A, Zalewska-Janowska A, Martus P, et al. How to assess disease activity in patients with chronic urticaria? Allergy. 2008;63(6):777–780. doi: 10.1111/j.1398-9995.2008.01726.x
  88. Hawro T, Ohanyan T, Schoepke N, et al. Comparison and interpretability of the available urticaria activity scores. Allergy. 2017;73(1):251–255. doi: 10.1111/all.13271
  89. Maas A, Hendriks RW. Role of Bruton’s tyrosine kinase in B cell development. Dev Immunol. 2001;8(3-4):171–181. doi: 10.1155/2001/28962
  90. Nyhoff LE, Clark ES, Barron BL, et al. Bruton’s tyrosine kinase is not essential for B cell survival beyond early developmental stages. J Immunol. 2018;200(7):2352–2361. doi: 10.4049/jimmunol.1701489
  91. Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol. 2016;12(7):763–773. doi: 10.1586/1744666X.2016.1152888
  92. Nyhoff LE, Griffith AS, Clark ES, et al. Btk supports autoreactive B cell development and protects against apoptosis but is expendable for antigen presentation. J Immunol. 2021;207(12):2922–2932. doi: 10.4049/jimmunol.2000558
  93. Torke S, Pretzsch R, Häusler D, et al. Inhibition of Bruton’s tyrosine kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020;140(4):535–548. doi: 10.1007/s00401-020-02204-z

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cells and cell receptors involved in chronic spontaneous urticaria pathogenesis ([11], adapted [85]). AR ― alarmin receptor; C3aR ― complement 3a receptor; C5aR ― complement 5a receptor; CCR3 ― C-C motif chemokine receptor 3; CRTh2 ― chemoattractant receptor-homologous molecule expressed on Th2 cells; CysLTR ― cysteinyl leukotriene receptor 1; HR ― histamine receptor; MRGPRX2 ― mas-related G protein-coupled receptor X2; PAFR ― platelet-activating factor receptor; PGD2 ― prostaglandin D2; Siglec 8 ― sialic acid-binding immunoglobulin-like lectin 8; TSLP ― thymic stromal lymphopoietin; VEGF ― vascular endothelial growth factor; VEGFR ― vascular endothelial growth factor receptor.

Download (486KB)
3. Fig. 2. Signalling pathway through BCR receptors in B cells and FcεRI receptors in mast cells and basophils (adapted [85]). BCR ― B-cell receptor; FcεRI ― high-affinity IgE receptor; BLNK ― B-cell linker protein; Ca ― calcium; ДАГ ― diacylglycerol; IKK ― IkB kinase; ИФ3 ― inositol-3,4,5-phosphate; MAPK ― mitogen-activated protein kinase; NFAT ― nuclear factor of activated T cells; NF‑kB ― nuclear factor-kB; P ― phosphorylation; PIP2 ― phosphatidylinositol-4,5-bisphosphate; PKCb ― protein kinase Cb; PLCg2 ― phospholipase C-g2.

Download (410KB)
4. Fig. 3. Proportion of patients achieving well-controlled urticaria and complete response with remibrutinib in REMIX 1 and REMIX-2 studies [86].

Download (98KB)

Copyright (c) 2024 Pharmarus Print Media

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies