Specificity of the condition of the skin barrier in patients with congenital epidermolysis bullosa as a factor of transcutaneous sensitization by food allergens

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Congenital epidermolysis bullosa is a heterogeneous group of hereditary dermatoses resulting from a pathogenic variant of the genome-encoding proteins of the dermo-epidermal junction. Epidermolysis bullosa is mainly manifested as the formation of blisters and erosions on the skin and mucous membranes in response to minor mechanical action. Itching is one of the most common symptoms of epidermolysis bullosa, reduces the quality of life, and causes additional skin damage.

The influence of comorbid pathology, which can increase itching, is not excluded. Skin inflammation secondary to a disruption in the skin barrier, wound-healing cascades, and unregulated activation of epidermal sensitive nerve endings are involved in the pathophysiology of itching at the molecular and cellular levels. Diffuse damage to the skin and mucous membranes, leading to the loss of their barrier properties, contributes to the excessive intake of antigens, including allergens of food and non-food origin, and to transcutaneous sensitization. However, food sensitization and food allergy in these patients have not been sufficiently studied. Understanding the causes of these processes may be crucial for the development of optimized techniques for managing children with congenital epidermolysis bullosa and improvement of their quality of life.

This review summarizes updated data on clinical and genetic aspects of congenital epidermolysis bullosa.

About the authors

Albina A. Galimova

National Medical Research Center for Children’s Health

Author for correspondence.
Email: albina86@yandex.ru
ORCID iD: 0000-0002-6701-3872
SPIN-code: 2960-6185

MD

Russian Federation, Moscow

Svetlana G. Makarova

National Medical Research Center for Children’s Health; Lomonosov Moscow State University

Email: sm27@yandex.ru
ORCID iD: 0000-0002-3056-403X
SPIN-code: 2094-2840

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow

Nikolay N. Murashkin

National Medical Research Center for Children’s Health; The First Sechenov Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs

Email: m_nn2001@mail.ru
ORCID iD: 0000-0003-2252-8570
SPIN-code: 5906-9724

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow; Moscow

References

  1. Has C, Fischer J. Inherited epidermolysis bullosa: New diagnostics and new clinical phenotypes. Exp Dermatol. 2019;28(10):1146–1152. doi: 10.1111/exd.13668
  2. Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: Update on the clinical and genetic aspects. An Bras Dermatol. 2020;95(5):551–569. doi: 10.1016/j.abd.2020.05.001
  3. Has C, Bauer JW, Bodemer C, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614–627. doi: 10.1111/bjd.18921
  4. Fine J. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the national epidermolysis bullosa registry. JAMA Dermatol. 2016;152(11):1231–1238. doi: 10.1001/jamadermatol.2016.2473
  5. Tadini G, Gualandri L, Colombi M, et al. Th e Italian registry of hereditary epidermolysis bullosa. Ital Dermatol Venereol. 2005; 140(4):359–372.
  6. Mellerio JE. Epidermolysis bullosa care in the United Kingdom. Dermatol Clin. 2010;28(2):395–396, xiv. doi: 10.1016/j.det.2010.02.015
  7. Kubanov AA, Albanova VI, Karamova AE, et al. Prevalence of congenital epidermolysis bullosa in the population of the Russian Federation. Bulletin Dermatol Venereol. 2015;(3):21–30. (In Russ).
  8. Epidermolysis bullosa: A guide for doctors. Ed. by N.N. Murashkin, L.S. Namazova-Baranova. Moscow: Pediatr”; 2019. 443 р. (In Russ).
  9. Yuen WY, Pas HH, Sinke RJ. Junctional epidermolysis bullosa of late onset explained by mutations in COL17A1. Br J Dermatol. 2011;164(2):1280–1284. doi: 10.1111/j.1365-2133.2011.10359.x
  10. Bruckner-Tuderman L, Has C. Molecular heterogeneity of blistering disorders: the paradigm of epidermolysis bullosa. J Invest Dermatol. 2012;132(Suppl 3):E2–5. doi: 10.1038/skinbio.2012.2
  11. Goldschneider KR, Lucky AW. Pain management in epidermolysis bullosa. Dermatol Clin. 2010;28(2):273–282, Ix. doi: 10.1016/j.det.2010.01.008
  12. Van Scheppingen C, Lettinga AT, Duipmans JC, et al. Main problems experienced by children with epidermolysis bullosa: A qualitative study with semi-structured interviews. Acta Derm Venereol. 2008;88(2):143–150. doi: 10.2340/00015555-0376
  13. Papanikolaou M, Onoufriadis A, Mellerio JE, et al. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br J Dermatol. 2021;184(5):816–825. doi: 10.1111/bjd.19496
  14. Bruckner AL, Losow M, Wisk J, et al. The challenges of living with and managing epidermolysis bullosa: insights from patients and caregivers. Orphanet J Rare Dis. 2020;15(1):1. doi: 10.1186/s13023-019-1279-y
  15. Eng VA, Solis DC, Gorell ES, et al. Patient reported outcomes and quality of life in recessive dystrophic epidermolysis bullosa: A global cross-sectional survey. J Am Acad Dermatol. 2021;85(5):1161–1167. doi: 10.1016/j.jaad.2020.03.028
  16. Danial C, Adeduntan R, Gorell ES, et al. Prevalence and characterization of pruritus in epidermolysis bullosa. Pediatr Dermatol. 2015;32(1):53–59. doi: 10.1111/pde.12391
  17. Jeon IK, On HR, Kim SC. Quality of life and economic burden in recessive dystrophic epidermolysis bullosa. Ann Dermatol. 2016;28(1):6–14. doi: 10.5021/ad.2016.28.1.6
  18. Schräder NH, Korte EW, Duipmans JC, et al. Identifying epidermolysis bullosa patient needs and perceived treatment benefits: an explorative study using the patient benefit index. J Clin Med. 2021;10(24):5836. doi: 10.3390/jcm10245836
  19. Snauwaert JJ, Yuen WY, Jonkman MF, et al. Burden of itch in epidermolysis bullosa. Br J Dermatol. 2014;171(1):73–78. doi: 10.1111/bjd.12885
  20. Dawn A, Papoiu AD, Chan YH, et al. Itch characteristics in atopic dermatitis: results of a web-based questionnaire. Br J Dermatol. 2009;160(4):642–644. doi: 10.1111/j.1365-2133.2008.08941.x
  21. Fine JD, Johnson LB, Weiner M, Suchindran C. Assessment of mobility, activities and pain in different subtypes of epidermolysis bullosa. Clin Exp Dermatol. 2004;29(2):122–127. doi: 10.1111/j.1365-2230.2004.01428.x
  22. Choi S, Solis D, Nazaroff J, et al. 224 Quality of life in recessive dystrophic epidermolysis bullosa: The AltaVoice patient registry, 2012–2015. J Investig Dermatol. 2017;137(5):S38.
  23. Dawn A, Papoiu AD, Chan YH, et al. Itch characteristics in atopic dermatitis: Results of a web-based questionnaire. Br J Dermatol. 2009;160(3):642–644. doi: 10.1111/j.1365-2133.2008.08941.x
  24. Yosipovitch G, Goon A, Wee J, et al. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. Br J Dermatol. 2000;143(3):969–973. doi: 10.1046/j.1365-2133.2000.03829.x
  25. Muraro A, Roberts G, Worm M, et al. Food allergy and anaphylaxis guidelines. Allergy. 2014;69(8):1026–1045.
  26. Eiwegger T, Hung L, San Diego KE, et al. Recent developments and highlights in food allergy. Allergy. 2019;74(12):2355–2367. doi: 10.1111/all.14082
  27. Renz H, Allen KJ, Sicherer SH, et al. Food allergy. Nat Rev Dis Primers. 2018;(4):17098. doi: 10.1038/nrdp.2017.98
  28. De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food allergy insights: A changing landscape. Arch Immunol Ther Exp (Warsz). 2020;68(2):8. doi: 10.1007/s00005-020-00574-6
  29. Turner PJ, Gowland MH, Sharma V, et al. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992–2012. J Allergy Clin Immunol. 2015;135(4):956–963.e1. doi: 10.1016/j.jaci.2014.10.021
  30. Pouessel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis fatalities: analysis of the Allergy Vigilance Network(R) database. Allergy. 2019;74(6):1193–1196. doi: 10.1111/all.13717
  31. Gupta RS, Warren CM, Smith BM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6):e20181235. doi: 10.1542/peds.2018-1235
  32. Burney PG, Potts J, Kummeling I, et al. The prevalence and distribution of food sensitization in European adults. Allergy. 2014; 69(3):365–371. doi: 10.1111/all.12341
  33. Lyons SA, Burney PG, Ballmer-Weber BK, et al. Food allergy in adults: substantial variation in prevalence and causative foods across Europe. J Allergy Clin Immunol Pract. 2019;7(6):1920–1928.e11. doi: 10.1016/j.jaip.2019.02.044
  34. Lyons SA, Clausen M, Knulst AC, et al. Prevalence of food sensitization and food allergy in children across Europe. J Allergy Clin Immunol Pract. 2020;8(8):2736–2746.e9. doi: 10.1016/j.jaip.2020.04.020
  35. Lack G. Epidemiologic risks for food allergy. J Allergy Clin Immunol. 2008;121(6):1331–1336. doi: 10.1016/j.jaci.2008.04.032
  36. Martin PE, Eckert JK, Koplin JJ, et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy. 2015;45(1):255–264. doi: 10.1111/cea.12406
  37. Grimshaw KE, Roberts G, Selby A, et al. Risk factors for hen’s egg allergy in Europe: EuroPrevall birth cohort. J Allergy Clin Immunol Pract. 2020;8(4):1341–1348.e1345. doi: 10.1016/j.jaip.2019.11.040
  38. Chinthrajah RS, Tupa D, Prince BT, et al. Diagnosis of food allergy. Pediatr Clin N Am. 2015;62(6):1393–1408. doi: 10.1016/j.pcl.2015.07.009
  39. Johnston LK, Chien KB, Bryce PJ. The immunology of food allergy. J Immunol. 2014;192(6):2529–2534. doi: 10.4049/jimmunol.1303026
  40. Aalberse RC, Platts-Mills TA, Rispens T. The developmental history of IgE and IgG4 antibodies in relation to atopy, eosinophilic esophagitis and the modified Th2 response. Curr Allergy Asthma Rep. 2016;16(6):45. doi: 10.1007/s11882-016-0621-x
  41. Satitsuksanoa P, Jansen K, Głobińska A, et al. Regulatory immune mechanisms in tolerance to food allergy. Front Immunol. 2018;(9):2939. doi: 10.3389/fimmu.2018.02939
  42. Chinthrajah RS, Hernandez JD, Boyd SD, et al. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016;137(4):984–997. doi: 10.1016/j.jaci.2016.02.004
  43. Huang YJ, Marsland BJ, Bunyavanich S, et al. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma, Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol. 2017;139(4):1099–1110. doi: 10.1016/j.jaci.2017.02.007
  44. De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food allergy insights: a changing landscape. Arch Immunol Ther Exp (Warsz). 2020;68(2):8. doi: 10.1007/s00005-020-00574-6
  45. Yu LC. Intestinal epithelial barrier dysfunction in food hypersensitivity. J Allergy (Cairo). 2012;2012:596081. doi: 10.1155/2012/596081
  46. Nakajima-Adachi H, Shibahara K, Fujimura Y, et al. Critical role of intestinal interleukin-4 modulatingregulatory T cells for desensitization, tolerance, and inflammation of food allergy. PLoS ONE. 2017;12(2):e0172795. doi: 10.1371/journal.pone.0172795
  47. Eiwegger T, Hung L, San Diego KE, et al. Recent developments and highlights in food allergy. Allergy. 2019;74(12):2355–2367. doi: 10.1111/all.14082
  48. Cabanillas B, Brehler AC, Novak N. Atopic dermatitis phenotypes and the need for personalized medicine. Curr Opin Allergy Clin Immunol. 2017;17(4):309–315. doi: 10.1097/ACI.0000000000000376
  49. Schmiechen ZC, Weissler KA, Frischmeyer-Guerrerio PA. Recent developments in understanding the mechanisms of food allergy. Curr Opin Pediatr. 2019;31(6):807–814. doi: 10.1097/MOP.0000000000000806
  50. Leyva-Castillo JM, Galand C, Kam C, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. 2019;50(5):1262–1275. doi: 10.1016/j.immuni.2019.03.023
  51. Kim JE, Kim JS, Cho DH, Park HJ. Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int J Mol Sci. 2016;17(8):1234. doi: 10.3390/ijms17081234
  52. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–959. doi: 10.1126/science.1260144
  53. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680. doi: 10.1126/scitranslmed.aah4680
  54. Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160(2):116–125. doi: 10.1111/imm.13152
  55. Harder J, Meyer-Hoffert U, Wehkamp K, et al. Differential gene induction of human β-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol. 2004;123(3):522–529. doi: 10.1111/j.0022-202X.2004.23234.x
  56. Braff MH, Di Nardo A, Gallo RL. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol. 2005;124(2):394–400. doi: 10.1111/j.0022-202X.2004.23443.x
  57. Kollisch G, Kalali BN, Voelcker V, et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114(4):531–541. doi: 10.1111/j.1365-2567.2005.02122.x
  58. Yao C, Oh JH, Lee DH, et al. Toll-like receptor family members in skin fibroblasts are functional and have a higher expression compared to skin keratinocytes. Int J Mol Med. 2015;35(5): 1443–1450. doi: 10.3892/ijmm.2015.2146
  59. Izadi N, Luu M, Ong PY, Tam JS. The role of skin barrier in the pathogenesis of food allergy. Children (Basel). 2015;2(3):382–402. doi: 10.3390/children2030382
  60. Marcelo H, Grunwald MD, Amichai MD, et al. Dystrophic epidermolysis bullosa associated with eosinophilic infiltrate and elevated serum IgE. Pediatric Dermatology. 1999;16(1):16–18. doi: 10.1046/j.1525-1470.1999.99004.x
  61. Makarova S, Murashkin N, Epishev R, et al. Food allergy as comorbid condition in children with epidermolysis bullosa. The results of the observational study. Acta Dermato-Venereologica. 2020; 100(S200):33–34. doi: 10.2340/00015555-3586
  62. Makarova S, Valenta R, Lupinek S, et al. Patients with epidermolysis bullosa (eb) due to mutations in collagen type 7 show markedly higher ige sensitizations to allergens than eb patients with mutations in keratins. Allergy. 2018;73(S105):729.
  63. Galimova AA, Makarova SG, Murashkin NN, et al. Food allergy as a comorbid background in a child with congenital epidermolysis bullosa. Russ Pediatric J. 2021;24(4):250. (In Russ).

Copyright (c) 2023 Pharmarus Print Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies