Anti-tumor activity of radiopharmaceutical medication based on biospecific antibodies to tumor-associated stroma elements and 177lutecium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiopharmaceutical targeted medication based on biospecific antibodies to tumor-associated stroma elements and 177lutecium (177Lu-DOTA-anti-CTLA4-GITR) potential anti-tumor activity was studied in two courses: one-time administration and two injections with a considerable lag. Subcutaneously transplanted experimental colonic carcinoma (AKATOL; cell line — CT26 EGFP) with high expression of green fluorescent protein (eGFP) and additional expression of target tumor-associated stroma molecules — CTLA4 and GITR was used as a model in BALB/c male mice. The experimental radiopharmaceutical targeted medication proved to possess high pharmacologic activity against the tumor under study. It was apparent in valid increase of experimental animals’ mean lifespan, tumor debut latent period inhibition and clinically valid tumor growth rate slowdown. Double administration of 177Lu-DOTA-anti-CTLA4-GITR proved to be more effective than one-time one, however neither of them managed to yield statistically valid difference in safety levels.

About the authors

Alexander P. Trashkov

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Author for correspondence.
Email: alexander.trashkov@gmail.com

MD, PhD, Head, Center of Preclinical and Clinical Research

Russian Federation, Gatchina, Leningrad Region; Moscow

Tamara D. Gagloeva

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Email: gagloeva_td@pnpi.nrcki.ru

Junior Research Associate, Center of Preclinical and Clinical Research; Junior Research Associate, Neorocognitive Research Resource Center

Russian Federation, Gatchina, Leningrad Region; Moscow

Alexander I. Budko

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Email: budko_ai@pnpi.nrcki.ru

Laboratory Researcher, Center of Preclinical and Clinical Research

Russian Federation, Gatchina, Leningrad Region

Andrey N. Petrovskiy

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Email: petrovskiy_an@pnpi.nrcki.ru

MD, PhD, Senior Research Associate, Center of Preclinical and Clinical Research

Russian Federation, Gatchina, Leningrad Region

Olyesya I. Timaeva

National Research Center “Kurchatov Institute”

Email: timaeva_oi@nrcki.ru

PhD, Academic Secretary. Kurchatov Complex of Nano-, Bio-, Informational, Cognitive and Socio-Humanitarian nature-like technologies

Russian Federation, Moscow

Nikolay V. Tsygan

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; Kirov Military Medical Academy

Email: tsygan_nv@pnpi.nrcki.ru

MD, PhD, Dr. Sci. (Med.), Assistant Professor, Leading Research Associate, Center of Preclinical and Clinical Research; Vice-Head, Department of the Nervous Diseases

Russian Federation, Gatchina, Leningrad Region; Saint Petersburg

Andrei A. Stanzhevsky

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies

Email: stanzhevsky_aa@pnpi.nrcki.ru

MD, PhD, Dr. Sci. (Med.), Professor, Leading Research Associate, Center of Preclinical and Clinical Research; Vice-Director Research

Russian Federation, Gatchina, Leningrad Region; Saint Petersburg

Andrey G. Vasiliev

St. Petersburg State Pediatric Medical University

Email: avas7@mail.ru

MD, PhD, Dr. Sci. (Med.), Professor, Head, Department of Pathologic Physiology with Course of Immunopathology

Russian Federation, Saint Petersburg

Dmitri N. Maistrenko

A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies

Email: info@rrcrst.ru

MD, PhD, Dr. Sci. (Med.), Professor, Director

Russian Federation, Saint Petersburg

Christina A. Sergunova

National Research Center “Kurchatov Institute”

Email: sergunova_ka@nrcki.ru

PhD, Head Academic Secretary

Russian Federation, Moscow

Dmitri S. Sysoev

A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies

Email: info@rrcrst.ru

PhD, Head, Group for research and production of equipment for nuclear medicine

Russian Federation, Saint Petersburg

Sergei V. Shatic

A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies

Email: s_shatik@hotmail.com

PhD, Head Department Cyclotron Radiochemical Medications

Russian Federation, Saint Petersburg

Dmitri O. Antuganov

A.M. Granov Russian Scientific Center for Radiology and Surgical Technologies

Email: info@rrcrst.ru

Research Associate, Laboratory of Radiopharmaceutical Technologies

Russian Federation, Saint Petersburg

Andrei L. Konevega

B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”

Email: konevega_al@pnpi.nrcki.ru

PhD, Head of the Department Molecular and Radiological Biophysics; Head of the Department Biomedical Technologies

Russian Federation, Gatchina, Leningrad Region; Moscow

References

  1. Belozertseva IV, Blinov DV, Krasilshchikova MS, ed. Rukovodstvo po soderzhaniyu i ispolzovaniyu laboratornykh zhivotnykh. 8th ed. Moscow: IRBIS; 2017. 336 p. (In Russ.)
  2. Vasil’ev AG, Komyakov BK, Tagirov NS, Musaev SA. Percutaneous nephrolithitripsy in the treatment of coral calculus nephrolithiasis. Bulletin of The Saint Petersburg State Medical Academy named after I.I. Mechnikov. 2009;4(33):183–186. (In Russ.)
  3. Tagirov NS, Nazarov TH, Vasil’ev AG, et al. The experience of using percutaneous nephrolithotripsy and contact ureterolithotripsy in the complex treatment of urolithiasis. Preventive and Clinical Medicine. 2012;4(45):30–33. (In Russ.)
  4. Trashkov AP, Brus TV, Vasil’ev AG, et al. Biochemical profile of rats with non-alcoholic fatty liver disease of various gravity and its correction with Remaxol. Pediatrician (St. Petersburg). 2017;8(4):78–85. (In Russ.)
  5. Trashkov AP, Vasil’ev AG, Kovalenko AL, Tagirov NS. Metabolic therapy of nephrolithiasis in two different rat models of kidney disease. Eksperimentalnaya i Klinicheskaya Farmakologiya. 2015;78(3):17–21. (In Russ.) doi: 10.30906/0869-2092-2015-78-3-17-21
  6. Trashkov AP, Vasil’ev AG, Cygan NV, et al. Antithrombotic therapy in oncology: contemporary concepts and pending problems. Pediatrician (St. Petersburg). 2012;3(2):3–19. (In Russ.)
  7. Trashkov AP, Muzhikyan AA, Tsygan NV, et al. Сomparative analysis of acridineacetate-containing compounds’ radio-sensitizing effect during malignant tumor experimental radiotherapy in a metastatic colorectal cancer model in BALB/C mice. Pediatrician (St. Petersburg). 2020;11(6):45–53. (In Russ.) doi: 10.17816/PED11645-53
  8. Trashkov AP, Gagloeva TD, Budko AI, et al. Biodistribution and kinetic characters of radiopharmaceutical medication based on biospecific antibodies to tumor-associated stroma elements and 177 lutcium. Pediatrician (St. Petersburg). 2022;13(5)51–60. doi: 10.17816/PED13551-60
  9. Trashkov AP, Panchenko AV, Kayukova ES, et al. Leikemiya P-388 u myshei linii CDF1 kak test-sistema opukhol-assotsiirovannogo neoangiogeneza i giperkoagulyatsii. Byulleten’ Eksperimental’noj Biologii i Mediciny. 2014;158(10):500–502.
  10. Khaytsev NV, Vasiliev AG, Trashkov AP, et al. The influence of sex and age upon response of white rats to hypoxic hypoxia. Pediatrician (St. Petersburg). 2015;6(2):71–77. doi: 10.17816/PED6271-77
  11. Sheremeta MS, Trukhin AA, Korchagina MO. The use of radioactive substances in medicine — history and development prospects. Problems of Endocrinology. 2021;67(6):59–67. (In Russ.) doi: 10.14341/probl12824
  12. Gong JE, Jin YJ, Kim JE, et al. Comparison of cisplatin-induced anti-tumor response in CT26 syngeneic tumors of three BALB/c substrains. Lab Anim Res. 2021;37(1):33. doi: 10.1186/s42826-021-00110-3
  13. Klingler M, Hörmann AA, Guggenberg EV. Cholecystokinin-2 receptor targeting with radiolabeled peptides: current status and future directions. Curr Med Chem. 2020;27(41):7112–7132. doi: 10.2174/0929867327666200625143035
  14. Ma X, Ding Y, Li W, et al. Diagnosis and management of gastroenteropancreatic neuroendocrine neoplasms by nuclear medicine: Update and future perspective. Front Oncol. 2022;12:1061065. doi: 10.3389/fonc.2022.1061065
  15. Morgenstern A, Apostolidis C, Kratochwil C, et al. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm. 2018;11(3):200–208. doi: 10.2174/1874471011666180502104524
  16. Pigarev SE, Panchenko AV, Yurova MN, et al. Evaluation of the genotoxic and antigenotoxic potential of lignin-derivative BP-C2 in the comet assay in vivo. Environmental Research. 2021;192:110321. doi: 10.1016/j.envres.2020.110321
  17. Panchenko AV, Popovich IG, Egormin PA, et al. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice. Biogerontology. 2016;17(2):317–324. doi: 10.1007/s10522-015-9611-y
  18. Sgouros G. Radiopharmaceutical Therapy. Health Phys. 2019;116(2):175–178. doi: 10.1097/HP.0000000000001000
  19. St James S, Bednarz B, Benedict S, et al. Current Status of Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):891–901. doi: 10.1016/j.ijrobp.2020.08.035
  20. Taniura T, Iida Y, Kotani H, et al. Immunogenic chemotherapy in two mouse colon cancer models. Cancer Sci. 2020;111(10):3527–3539. doi: 10.1111/cas.14624
  21. Tsygan NV, Trashkov AP, Litvinenko IV, et al. Autoimmunity in acute ischemic stroke and the role of blood-brain barrier: the dark side or the light one? Frontiers of Medicine. 2019;13(4):420–426.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of one-time introduction of 177Lu-DOTA-anti-CTLA4-GITR upon the dynamics of primary tumor node growth in BALB/с mice with transplanted CT26 EGFR

Download (154KB)
3. Fig. 2. The effect of course introduction of 177Lu-DOTA-anti-CTLA4-GITR upon the dynamics of primary tumor node growth in BALB/с mice with transplanted CT26 EGFR

Download (154KB)

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies