Anthropogenic environmental factors as triggers of type 1 diabetes mellitus in children

Cover Page

Cite item

Full Text

Abstract

In the 21st century, environmental factors of anthropogenic origin began to come under the close attention of scientists. There is an increase in the incidence of various nosological forms, with autoimmune pathogenesis. Among them, one of the most important endocrinopathies is type 1 diabetes mellitus (DM1), especially in children. In parallel, the urban population continues to grow. At the same time, up to 60% of the urban population of Russia (about 58.8 million people) lives in areas with high and very high levels of environmental pollution. Among the pollution factors, special attention is now drawn to the car and road complex, during the operation of which destruction aerosols are formed, forming a mixture of particles that includes a chemical composition of a mixture of silicon oxides, aluminum, iron, calcium, magnesium and organic substances, as well as compounds with heavy metals. The article analyzes the main sources of environmental pollution in Russian Federation, identifies the central/dominant model, and predicts significant and secondary models of possible regional correlation between the factors related to urbanization and spread of an autoimmune disease, which is DM1 among children of Russia.

About the authors

Lidia A. Soprun

Saint Petersburg State University

Author for correspondence.
Email: lidas7@yandex.ru

MD, PhD, Assistant Professor, Department of Health Care Organization and Medical Law

Russian Federation, Saint Petersburg

Vladimir J. Utekhin

St. Petersburg State University; St. Petersburg State Pediatric Medical University Ministry of Health of the Russian Federation

Email: utekhin44@mail.ru

MD, PhD, Associate Professor; MD, PhD, Associate Professor, Department of Pathologic Physiology Courses Immunopathology and Medical Informatics

Russian Federation, Saint Petersburg

Anton N. Gvozdetskiy

Saint Petersburg State University

Email: comisora@yandex.ru

Assistant Professor, Department of Pathology

Russian Federation, Saint Petersburg

Igor M. Akulin

Saint Petersburg State University

Email: akulinim@yandex.ru

MD, PhD, Dr Med Sci, Professor, Head, Department of Health Organization and Medical Law

Russian Federation, Saint Petersburg

Leonid P. Churilov

Saint Petersburg State University; Saint Petersburg Research Institute of Phthisiopulmonology

Email: elpach@mail.ru

MD, PhD, Dr Med Sci Professor, Head, Department of Pathology

Russian Federation, Saint Petersburg

References

  1. Горшкова И.А., Макарова О.Ю. Анализ загрязнения атмосферного воздуха выбросами автотранспортных средств в условиях сложившейся градостроительной ситуации в центральной части Санкт-Петербурга // Науковедение. Интернет-журнал. – 2014. – № 4 (23). [Gorshkova IA, Makarova OYu. Analysis of air pollution from vehicle emissions in the current urban development situation in the Central part of St. Petersburg. Naukovedenie. Internet-zhurnal. 2014;4(23). (In Russ.)]
  2. Копытенкова О.И., Леванчук А.В., Мингулова И.Р. Гигиеническая характеристика загрязнения окружающей среды в процессе эксплуатации транспортно-дорожного комплекса // Профилактическая и клиническая медицина. – 2012. – № 3. – С. 87–92. [Kopytenkova OI, Levanchuk AV, Mingulova IR. Hygienic characteristics of environmental pollution during operation of the transport and road complex. Profilakticheskaya i klinicheskaya medicina. 2012;(3),87-92. (In Russ.)]
  3. Сопрун Л.А., Чурилов Л.П., Мироненко О.В. и др. Предпосылки развития аутоиммунно-воспалительного синдрома, вызванного адъювантами (ASIA), в стоматологической практике / Клиническая патофизиология. – 2017. – № 4. – С. 40–48. [Soprun LA, Churilov LP, Mironenko OV, et al. Prerequisites for the development of autoimmune-inflammatory syndrome induced by adjuvants (ASIA) in dental practice. Clinical Pathophysiology. 2017;4:40-48. (In Russ.)]
  4. Федеральная служба государственной статистики (Росстат). Статистический сборник «Регионы России. Социально-экономические показатели». 2009, 2012, 2014, 2016. Москва: Росстат, 990 + 1090 + 1180 + + 1200 С. [Federal’naya gosudarstvennaya statisticheskaya sluzhba (Rosstat). Statisticheskiy sbornik “Regiony Rossii. Sotsial’no-ekonomicheskie pokazateli”. 2009, 2012, 2014, 2016. Moscow: Rosstat Publisher, 990 + 1090 + 1180 + 1200 p). (In Russ.)]
  5. Фридман К.Б., Лим Т.Е., Шусталов С.Н., Леванчук А.В. Концептуальная модель оценки и управления риском для здоровья населения от транспортных загрязнений // Известия Петербургского университета путей сообщения. – 2011. – № 1. – С. 230–237. [Fridman KB, Lim TE, Hustalov SN, Levanchuk AV. Kontseptual’naya model’ otsenki i upravleniya riskom dlya zdorov’ya naseleniya ot transportnykh zagryaznenij. Izvestiya Peterburgskogo universiteta putej soobshcheniya. 2011;(1):230-237. (In Russ.)]
  6. Хватов В.Ф., Федцов Д.В., Исмаилов Э.Н. К вопросу о количестве автотранспортных средств на автомагистралях Санкт-Петербурга // Сб. трудов НИИ Атмосфера. – 2010. – № 4. – С. 5–18. [Hvatov VF, Fedcov DV, Ismailov EN. The issue of the number of vehicles on the highways of St. Petersburg. Sb. trudov NII Atmosfera. 2010;(4):15-18. (In Russ.)]
  7. Центральный научно-исследовательский институт организации и информатизации здравоохранения. Министерство здравоохранения Российской Федерации. Статистический материал. В 65 томах. – М.: Изд-во ЦНИИ ОИЗ, 2008–2016. [Tsentral’nyi nauchno-issledovatel’skiy institute organizatsii i informatizatsii zdravookhraneniya. Minzdrav RF. Statisticheskij material. In 65 volumes. Moscow: CNIIOIZ Publisher, 2008-2018. (In Russ.)]
  8. Barraza F, Lambert F, Jorquera H, Villalobos AM, Gallardo L. Temporal evolution of main ambient PM2.5 sources in Santiago, Chile, from 1998 to 2012. Atmos Chem Phys. 2017;17(16):10093-10107.
  9. Benjamin DJ. Redefine statistical significance. Nature Human Behaviour. 2018:2(1):6-10. https://doi.org/10.1038/s41562-017-0189-z.
  10. Beyerlein A, Krasmann M, Thiering E, et al. Ambient air pollution and early manifestation of type 1 diabetes. Epidemiology. 2015;26:31-2. 10.1097/EDE.0000000000000254PMID: 25668686' target='_blank'>https://doi: 10.1097/EDE.0000000000000254PMID: 25668686.
  11. Breznan D, Karthikeyan S, Phaneuf M, et al. Development of an integrated approach for comparison of in vitro and in vivo responses to particulate matter. Part Fibre Toxicol. 2016;13(1):41. 10.1186/s12989-016-0152-6' target='_blank'>https://doi: 10.1186/s12989-016-0152-6.
  12. Gouveia N, Junger WL, Romieu I, et al. Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environ Pollut. 2018;232:385-391. 10.1016/j.envpol.2017.08.125' target='_blank'>https://doi: 10.1016/j.envpol.2017.08.125.
  13. Hurley R, Woodward J, Rothwell JJ. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018;11:251-257. 10.1038/s41561-018-0080-1' target='_blank'>https://doi: 10.1038/s41561-018-0080-1.
  14. Nhung NTT, Amini H, Schindler C, et al. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ Pollut. 2017;230:1000-1008. https://doi: 10.1016/j.envpol.2017.07.063.
  15. Ogonowski M, Schür C, Jarsén Å, Gorokhova E. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna. PLOS ONE. 2016;11:e0155063. https://doi.org/10.1371/journal.pone.0155063.
  16. Peeken I, Primpke S, Beyer B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 2018;9(1):1505. 10.1038/s41467-018-03825-5' target='_blank'>https://doi: 10.1038/s41467-018-03825-5.
  17. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  18. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today. 1993;14(9):426-30. 10.1016/0167-5699(93)90244-F' target='_blank'>https://doi: 10.1016/0167-5699(93)90244-F.
  19. Tapia V, Steenland K, Sarnat SE, et al. Time-series analysis of ambient PM2.5 and cardiorespiratory emergency room visits in Lima, Peru during 2010-2016. J Expo Sci Environ Epidemiol. (2019). https://doi.org/10.1038/s41370-019-0189-3.
  20. Vu BN, Sánchez O, Bi J, et al. Developing an advanced PM2.5 exposure model in Lima, Peru. Remote Sens (Basel). 2019;11(6):641. https://doi.org/10.3390/rs11060641.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The incidence of type 1 diabetes mellitus in children 0–14 years old on the territory of the Russian Federation from 2008 to 2018. Along the ordinate axis – incidence (number of cases per 100 thousand population): y – the number of cases of newly diagnosed DM1; R is the approximation index. The solid line is the incidence line; dotted line – trend line

Download (527KB)
3. Fig. 2. The incidence of type 1 diabetes mellitus in children 0–14 years old in different regions of the Russian Federation from 2008 to 2018. The abscissa shows the regions of the Russian Federation in order of increasing incidence; along the ordinate axis – incidence (number of cases per 100 thousand population): y – the number of cases of newly diagnosed DM1; R – is the approximation index

Download (335KB)
4. Fig. 3. The dependence of type 1 diabetes on factors of urbanization

Download (195KB)

Copyright (c) 2020 Soprun L.A., Utekhin V.J., Gvozdetskiy A.N., Akulin I.M., Churilov L.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies