代谢性谷氨酸受体拮抗剂对大鼠最大电击模型影响的研究

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

目的:目的:研究代谢型谷氨酸(mGlu)受体拮抗剂对大鼠脑内最大电刺激致惊厥发作发展及脂质过氧化产物含量的影响。

材料与方法。实验对象为体重180—210 g的雄性Wistar大鼠87只。实验中采用了最大电击法。MGlu受体第1和第5亚型的选择性拮抗剂在最大电击前1小时给予。对照组大鼠注射等量生理盐水。脂质过氧化过程的强度通过次级产物与硫代巴比妥酸反应的水平采用分光光度法进行评估。

结果。研究发现,最大电击程序导致大鼠大脑皮质中明显的阵挛-强直性惊厥发作和脂质过氧化产物水平增加3倍以上。研究发现,第5亚型受体mGlu选择性拮抗剂几乎完全阻断大鼠癫痫发作的紧张期,并在很大程度上阻止了最大电刺激引起的脂质过氧化过程的强化。44%的实验动物在给予第1亚型选择性mGlu受体拮抗剂后出现强直性惊厥。同时,由于电击的作用,这种拮抗剂也部分降低了脂质过氧化产物的含量。

结论。因此,代谢性谷氨酸受体参与了大鼠最大电击诱发惊厥发作的发生机制。同时,通过阻断第5亚型的mGlu受体,观察到惊厥表现最明显的减弱,以及最大电休克程序导致的脂质过氧化产物水平的升高。获得的数据证实了使用第5亚型的代谢受体拮抗剂作为潜在的抗惊厥药物治疗广泛性癫痫的可能性

作者简介

Valentina Bashkatova

P.K. Anokhin Scientific Research Institute of Normal Physiology

编辑信件的主要联系方式.
Email: v.bashkatova@nphys.ru
ORCID iD: 0000-0001-6632-5973
SPIN 代码: 7383-8483

MD, Dr.Sci.(Biol.), Leading Researcher of the Reinforcements Physiology Laboratory

俄罗斯联邦, Moscow

Sergey Sudakov

P.K. Anokhin Scientific Research Institute of Normal Physiology

Email: s-sudakov@nphys.ru
ORCID iD: 0000-0002-9485-3439
SPIN 代码: 1127-4090
Researcher ID: D-1647-2013

MD, Dr.Sci.(Med.), Professor, Director, Head of the Reinforcements Physiology Laboratory

俄罗斯联邦, Moscow

参考

  1. Khan AU, Akram M, Daniyal M, et al. Awareness and current knowledge of epilepsy. Metabolic Brain Disease. 2020;35(1):45-63. doi: 10.1007/s11011-019-00494-1
  2. Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure. 2019;68:79-88. doi: 10.1016/j.seizure.2018.08.004
  3. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168:107966. doi: 10.1016/j.neuropharm.2020.107966
  4. Meldrum B. Status epilepticus: the past and the future. Epilepsia. 2007;48(Suppl 8):33-4. doi: 10.1111/j.1528-1167.2007.01343.x
  5. Hanada T. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules. 2020;10(3):464. doi: 10.3390/biom10030464
  6. Sebastianutto I, Cenci MA. mGlu receptors in the treatment of Parkinson's disease and L-DOPA-induced dyskinesia. Current Opinion in Pharmacology. 2018;38:81-9. doi: 10.1016/j.coph.2018.03.003
  7. Celli R, Santolini I, Van Luijtelaar G, et al. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opinion on Therapeutic Targets. 2019;23(4):341-51. doi: 10.1080/14728222.2019.1586885
  8. Kotlinska JH, Bochenski M, Danysz W. The role of group I mGlu receptors in the expression of ethanol-induced conditioned place preference and ethanol withdrawal seizures in rats. European Journal of Pharmacology. 2011. 670(1):154-61. doi: 10.1016/j.ejphar.2011.09.025
  9. Cavarsan CF, Matsuo A, Blanco MM, et al. Maximal electro- shock-induced seizures are able to induce Homer1a mRNA expression but not pentylenetetrazole-induced seizures. Epilepsy & Behavior. 2015;44:90-5. doi: 10.1016/j.yebeh.2014.12.034
  10. Robbins MJ, Starr KR, Honey A, et al. Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Research. 2007;1152:215-27. doi: 10.1016/j.brainres.2007.03.028
  11. Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research. 2017;42(7):1873-88. doi: 10.1007/s11064-017-2222-z
  12. Barton ME, Peters SC, Shannon HE. Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Research. 2003;56(1):17-26. doi: 10.1016/j.eplepsyres.2003.08.001
  13. Fadyukova OE, Kuzenkov VS, Koshelev VB, et al. Semax prevents from the excess nitric oxide production caused by incomplete global ischemia in rat brain. Experimental and Clinical Pharmacology. 2001;64(2):31-4. (In Russ).
  14. Vishnoi S, Raisuddin S, Parvez S. Glutamate Excitotoxicity and Oxidative Stress in Epilepsy: Modulatory Role of Melatonin. Journal of Environmental Pathology, Toxicology and Oncology. 2016;35(4):365-74. doi: 10.1615/JEnvironPatholToxicolOncol.2016016399
  15. Bratek E, Ziembowicz A, Bronisz A, et al. The activation of group II metabotropic glutamate receptors protects neonatal rat brains from oxidative stress injury after hypoxia-ischemia. PLoS One. 2018;13(7):e0200933. doi: 10.1371/journal.pone. 0200933
  16. Bashkatova VG, Sudakov SK, Prast H. Antagonists of metabotropic glutamate receptors prevent the development of audiogenic seizures. Bulletin of Experimental Biology and Medicine. 2015;159(1):A001. (In Russ). doi: 10.1007/s10517-015- 2874-0
  17. Kohara А, Nagakura Y, Kiso T, et al. Antinociceptive profile of a selective metabotropic glutamate receptor 1 antagonist YM-230888 in chronic pain rodent models. European Journal of Pharmacology. 2007;571(1):8-16. doi: 10.1016/j.ejphar.2007.05.030
  18. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351-8. doi: 10.1016/0003-2697(79)90738-3
  19. Palma E, Ruffolo G, Cifelli P, et al. Modulation of GABAA Receptors in the Treatment of Epilepsy. Current Pharmaceutical Design. 2017;23(37):5563-8. doi: 10.2174/1381612823666170809100230
  20. Voronina TA. Geroprotective effects of ethylmethylhydro- xypyridine succinate in an experimental study. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(4):81-7. (In Russ). doi: 10.17116/jnevro202012004181

补充文件

附件文件
动作
1. JATS XML
2. 图 1

下载 (44KB)

版权所有 © Bashkatova V., Sudakov S., 2021


 


##common.cookie##