Thyroid dysfunction in liver pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: A close functional relationship between the liver and thyroid gland suggests co-dependence of processes occurring in them not only under normal conditions, but also in pathology. The impact of thyroid dysfunction on change in the liver state has been extensively explored in the literature, while the converse — the impact of liver pathology on thyroid functional condition — requires additional analysis and study.

AIM: To study changes in the functional condition of the thyroid gland in the most common liver diseases.

An information search was conducted in the eLibrary, PubMed databases for the period from January 01, 2004 to April 01, 2004 with no restrictions on the type of publication. The following keywords were used: thyroid dysfunction, thyroxine, triiodothyronine, non-alcoholic fatty liver disease, chronic hepatitis, liver cirrhosis, hemochromatosis, Wilson's disease.

An analysis of the literature sources demonstrates various mechanisms of thyroid dysfunction in liver diseases. Non-alcoholic fatty liver disease (NAFLD) is indirectly related to impaired thyroid function and potentiation of metabolic syndrome manifestations through insulin resistance and obesity. Data on thyroid dysfunction in a patient with NAFLD due to the development of autoimmune damage and an increased risk of thyroid cancer also deserve the attention of the clinician. A probability for autoimmune thyroid damage should necessarily be taken into account in patients with autoimmune hepatitis. The incidence of interferon-induced thyroid dysfunction is currently declining due to changes in the antiviral therapy protocols. Literature data indicate an increased risk of thyroid cancer in infection with hepatitis C virus. Data on the impact of liver cirrhosis on thyroid function are contradictory, most commonly noted are reduction of triiodothyronine and thyroxine levels due to the involvement of liver in thyroid homeostasis (liver deiodinase system, thyroxine-binding globulin). Iron overload of thyrocytes in hemochromatosis can in some cases be accompanied by changes in thyroid status.

CONCLUSION: Thus, further investigation of thyroid status in liver diseases is needed, on the one hand, to elucidate mechanisms of thyroid dysfunction, and on the other, to determine a probable role of triiodothyronine and thyroxine levels as markers of severity of liver dysfunction. The data accumulated to date allow us to recommend studying thyroid hormonal status in chronic liver diseases.

About the authors

Oleg M. Uryasev

Ryazan State Medical University

Email: Uryasev08@yandex.ru
ORCID iD: 0000-0001-8693-4696
SPIN-code: 7903-4609

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Ryazan

Alexandra V. Solovieva

Ryazan State Medical University

Author for correspondence.
Email: savva2005@bk.ru
ORCID iD: 0000-0001-7896-6356
SPIN-code: 1943-7765

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Ryazan

Svetlana V. Berstneva

Ryazan State Medical University

Email: berst.ru@mail.ru
ORCID iD: 0000-0002-3141-4199
SPIN-code: 6722-3203

MD, Dr. Sci. (Medicine), Assistant Professor

 
Russian Federation, Ryazan

Kirill O. Slabachkov

Ryazan State Medical University

Email: rooney121997@mail.ru
ORCID iD: 0000-0003-4638-9560
SPIN-code: 1238-6103
Russian Federation, Ryazan

References

  1. Kalra S, Bhattacharya S, Rawal P. Hepatocrinology. Med Sci (Basel). 2021;9(2):39. doi: 10.3390/medsci9020039 EDN: SWLGJF
  2. Van Tienhoven–Wind LJN, Dullaart RPF. Low-normal thyroid function and the pathogenesis of common cardio-metabolic disorders. Eur J Clin Invest. 2015;45(5):494–503. doi: 10.1111/eci.12423
  3. Lai S, Li J, Wang Z, et al. Sensitivity to Thyroid Hormone Indices Are Closely Associated With NAFLD. Front Endocrinol (Lausanne). 2021; 12:766419. doi: 10.3389/fendo.2021.766419 EDN: ZCOWFZ
  4. Kim D, Vazquez–Montesino LM, Escober JA, et al. Low Thyroid Function in Nonalcoholic Fatty Liver Disease is an Independent Predictor of All-Cause and Cardiovascular Mortality. Am J Gastroenterol. 2020; 115(9):1496–1504. doi: 10.14309/ajg.0000000000000654 EDN: EEFJGQ
  5. Hatziagelaki E, Paschou SA, Schön M, et al. NAFLD and thyroid function: pathophysiological and therapeutic considerations. Trends Endocrinol Metab. 2022;33(11):755–768. doi: 10.1016/j.tem.2022.08.001 EDN: WAFBSY
  6. Saatmann N, Schön M, Zaharia O-P, et al. Association of thyroid function with non-alcoholic fatty liver disease in recent-onset diabetes. Liver Int. 2024;44(1):27–38. doi: 10.1111/liv.15723 EDN: DPKPYQ
  7. Scappaticcio L, Longo M, Maiorino MI, et al. Abnormal Liver Blood Tests in Patients with hyperthyroidism: Systematic Review and Meta-Analysis. Thyroid. 2021;31(6):884–894. doi: 10.1089/thy.2020.0715 EDN: JJYYZU
  8. Kim D, Touros A, Kim WR. Nonalcoholic fatty liver disease and metabolic syndrome. Clin Liver Dis. 2018;22(1):133–140. doi: 10.1016/j.cld.2017.08.010
  9. Berstneva SV. Epidemiological aspects of comorbid pathology — diabetes mellitus and hypothyroidism. Science of the Young (Eruditio Juvenium). 2020;8(2):154–163. doi: 10.23888/HMJ202082154-163 EDN: USRDSR
  10. Kwon H, Han K-D, Moon SJ, et al. Nonalcoholic Fatty Liver Disease and the Risk of Thyroid Cancer Among Young Adults in South Korea. J Clin Endocrinol Metab. 2024;109(3):e1095–e1104. doi: 10.1210/clinem/dgad575 EDN: EPXRNY
  11. Rezzonico J, Rezzonico M, Pusiol E, et al. Introducing the thyroid gland as another victim of the insulin resistance syndrome. Thyroid. 2008;18(4): 461–464. doi: 10.1089/thy.2007.0223
  12. Gorbunov AYu, Suchkova EV, Zelenin VA, Lukashevich АP. The condition of protein metabolism and hepatocyte growth factor in patients with non-alcoholic fatty liver disease. Health, Demography, Ecology of Finno-Ugric Peoples. 2022;(2):18–21. EDN: DRUMGB
  13. Lee JW, Jin YJ, Lee J, et al. A Study of Thyroid Function in Partial Thyroxine-Binding Globulin Deficiency. Soonchunhyang Med Sci. 2015; 21(2):65–69.
  14. Wang Z, Zhao X, Chen S, et al. Associations Between Nonalcoholic Fatty Liver Disease and Cancers in a Large Cohort in China. Clin Gastroenterol Hepatol. 2021;19(4):788–796.e4. doi: 10.1016/j.cgh.2020.05.009 EDN: YYFJOI
  15. Xiao R, Ni C, Cai Y, et al. Prevalence and impact of non-alcoholic fatty liver disease in patients with papillary thyroid carcinoma. Endocrine. 2023;80(3):619–629. doi: 10.1007/s12020-023-03312-y EDN: YTKXZT
  16. Kim HJ, Park SJ, Park HK, et al. Association of thyroid autoimmunity with nonalcoholic fatty liver disease in euthyroid middle-aged subjects: A population-based study. J Gastroenterol Hepatol. 2022;37(8):1617–1623. doi: 10.1111/jgh.15865 EDN: TKEATU
  17. Li D, Zhang Z, Zhang C, et al. Unraveling the connection between Hashimoto’s Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4+ central memory T cells through integrated genetic approaches. Endocrine. 2024;85(2):751–765. doi: 10.1007/s12020-024-03745-z EDN: KJXLXH
  18. Konovalova EY, Lavrova AE, Presnyakova MV. Characteristics of clinical and anamnestic data and of condition of primary hemostasis in chronic diseases of liver in children. I.P. Pavlov Russian Medical Biological Herald. 2020;28(3):300–311. doi: 10.23888/PAVLOVJ2020283300-311 EDN: JSEFVQ
  19. Khoury T, Kadah A, Mari A, et al. Thyroid Dysfunction is Prevalent in Autoimmune Hepatitis: A Case Control Study. Isr Med Assoc J. 2020; 22(2):100–103.
  20. Zeng Q, Zhao L, Wang C, et al. Relationship between autoimmune liver disease and autoimmune thyroid disease: a cross-sectional study. Scand J Gastroenterol. 2020;55(2):216–221. doi: 10.1080/00365521.2019.1710766 EDN: LCEBAJ
  21. Hassan MM, Kaseb A, Li D, et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology. 2009;49(5):1563–1570. doi: 10.1002/hep.22793
  22. Hammerstad SS, Blackard JT, Lombardi A, et al. Hepatitis C Virus Infection of Human Thyrocytes: Metabolic, Hormonal, and Immunological Implications. J Clin Endocrinol Metab. 2020;105(4):1157–1168. doi: 10.1210/clinem/dgz241
  23. Rodia R, Meloni PE, Mascia C, et al. Direct-acting antivirals used in HCV-related liver disease do not affect thyroid function and autoimmunity. J Endocrinol Invest. 2023;46(2):359–366. doi: 10.1007/s40618-022-01909-0 EDN: LOAWOL
  24. Pastore F, Martocchia A, Stefanelli M, et al. Hepatitis C virus infection and thyroid autoimmune disorders: A model of interactions between the host and the environment. World J Hepatol. 2016;8(2):83–91. doi: 10.4254/wjh.v8.i2.83 EDN: WORIIF
  25. Antonelli A, Ferri C, Pampana A, et al. Thyroid disorders in chronic hepatitis C. Am J Med. 2004;117(1):10–13. doi: 10.1016/j.amjmed.2004.01.023
  26. Duberg A-S, Nordström M, Törner A, et al. Non-Hodgkin's lymphoma and other nonhepatic malignancies in Swedish patients with hepatitis C virus infection. Hepatology. 2005;41(3):652–659. doi: 10.1002/hep.20608
  27. Antonelli A, Ferri C, Fallahi P, et al. Thyroid cancer in HCV-related chronic hepatitis patients: a case-control study. Thyroid. 2007;17(5):447–451. doi: 10.1089/thy.2006.0194 EDN: XPVPRN
  28. Luo W, Wu S, Chen H, et al. Thyroid dysfunction is associated with the loss of hepatitis B surface antigen in patients with chronic hepatitis B undergoing treatment with α-interferon. J Int Med Res. 2021;49(6):03000605211025139. doi: 10.1177/03000605211025139 EDN: SCSCWS
  29. Tu Y, Ji F, Yang J, et al. Weighted thyroid-stimulating hormone disturbance in prognosis of hepatitis B virus-related acute-on-chronic liver failure. Hepatol Res. 2024;54(2):151–161. doi: 10.1111/hepr.13970 EDN: GPDKTM
  30. Piantanida E, Ippolito S, Gallo D, et al. The interplay between thyroid and liver: implications for clinical practice. J Endocrinol Invest. 2020;43(7): 885–899. doi: 10.1007/s40618-020-01208-6 EDN: GIHTSS
  31. Mobin A, Haroon H, Shaikh H, et al. Decompensated cirrhosis; Thyroid hormone levels in patients. Professional Med J. 2016;23(01):034–038. doi: 10.17957/TPMJ/16.3114
  32. Vincken S, Reynaert H, Schiettecatte J, et al. Liver cirrhosis and thyroid function: Friend or foe? Acta Clin Belg. 2017;72(2):85–90. doi: 10.1080/17843286.2016.1215641
  33. Murphy MS, Walsh CH. Thyroid function in haemochromatosis. Ir J Med Sci. 2004;173(1):27–29. doi: 10.1007/bf02914520 EDN: ETKWUJ
  34. Barton JC, Leiendecker–Foster C, Reboussin DM, et al.; Hemochromatosis and Iron Overload Screening Study Research Investigators. Thyroid-stimulating hormone and free thyroxine levels in persons with HFE C282Y homozygosity, a common hemochromatosis genotype: the HEIRS study. Thyroid. 2008;18(8):831–838. doi: 10.1089/thy.2008.0091
  35. Dauth N, Mücke VT, Mücke MM, et al. Hypopituitarism in Wilson’s disease resolved after copper-chelating therapy. Endocrinol Diabetes Metab Case Rep. 2021;2021:20-0086. doi: 10.1530/edm-20-0086 EDN: NTXELU

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).