Place of lipid theory in history of study of atherosclerosis
- Authors: Kotlyarov S.N.1
-
Affiliations:
- Ryazan State Medical University
- Issue: Vol 32, No 4 (2024)
- Pages: 681-689
- Section: Reviews
- URL: https://journals.rcsi.science/pavlovj/article/view/279498
- DOI: https://doi.org/10.17816/PAVLOVJ636812
- ID: 279498
Cite item
Abstract
INTRODUCTION: Despite the significant advances in the study of atherosclerosis in recent decades, the diseases associated with it still remain one of the leading problems of modern Western society. In the complicated history of the study of atherosclerosis, various theories have been proposed that attempted to explain its nature from positions of the scientific knowledge of those years.
АIM: To analyze the place of lipid disorders in various theories of atherogenesis that have been proposed in different historic periods and have shaped the current understanding of its nature and are the basis for future research.
The lipid theory, proposed more than a hundred years ago, is still the basis for the prevention and treatment of atherosclerosis. Subsequent findings on the role of endothelial dysfunction, on the importance of immune cells and innate immune mechanisms, and the importance of vascular hemodynamic disturbances, have shaped today's understanding of the pathogenesis of atherosclerosis, which regards it as a complex chain of immune and metabolic events occurring over many years and involving various cells of the vascular wall and the bloodstream. Much of the data on the pathogenesis of atherosclerosis obtained to date have no therapeutic application and are promising areas for future research.
CONCLUSION: The lipid theory of atherogenesis has passed a complicated way from understanding the role of lipids as a simple substrate for development of atherosclerosis to the fact of their performing complex immune and metabolic functions and being an important diagnostic and therapeutic target.
Full Text
##article.viewOnOriginalSite##About the authors
Stanislav N. Kotlyarov
Ryazan State Medical University
Author for correspondence.
Email: 79065410775@yandex.ru
ORCID iD: 0000-0002-7083-2692
SPIN-code: 3341-9391
MD, Dr. Sci. (Med.), Associate Professor
Russian Federation, RyazanReferences
- Kalinin RE, Suchkov IA, Кlimentova EA, et al. Biomarkers of Apoptosis and Cell Proliferation in Diagnosing the Progression of Atherosclerosis in Different Vascular Pools. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):243–52. (In Russ). doi: 10.17816/PAVLOVJ88938
- Shevchenko YL, Borshchev GG, Ermakov DY, et al. Comparative Results of Standard Coronary Artery Bypass Grafting, Staged Hybrid Myocardial Revascularization and Purely Endovascular Correction in Patients with Coronary Artery Disease in Long-Term Period after Surgery. I. P. Pavlov Russian Medical Biological Herald. 2024;32(3):347–58. (In Russ). doi: 10.17816/PAVLOVJ632376
- Kalinin RE, Suchkov IA, Pshennikov AS, et al. Dynamics of the Alterations of Cognitive Functions in Patients with Past Interventions on the Carotid System. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):261–70. (In Russ). doi: 10.17816/PAVLOVJ100037
- Zakeryaev AB, Vinogradov RA, Sukhoruchkin PV, et al. Predictors of Long-Term Complications of Femoropopliteal Bypass with Autovenous Graft. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):213–22. (In Russ). doi: 10.17816/PAVLOVJ96438
- Luca AC, David SG, David AG, et al. Atherosclerosis from Newborn to Adult — Epidemiology, Pathological Aspects, and Risk Factors. Life (Basel). 2023;13(10):2056. doi: 10.3390/life13102056
- Marchand F. Über Arteriosklerose. In: Von Leyden E, Pfeiffer E. Verhandlungen des Kongresses für Innere Medizin. Einundzwanzigster Kongress; Leipzig; 1904. Wiesbaden: Verlag von J. F. Bergmann; 1904. Vol. 18–21. P. 23–59. (In German).
- Anitschkow N., Chalatow S. Ueber experimentelle Cholesterin-steatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol. 1913;24:P. 1–9. (In German).
- Ignatowski A. Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchows Arch Path Anat. 1909;198:248–70. (In German). doi: 10.1007/BF01949591
- Anichkov NN. O mestakh osazhdeniya kolloidnykh substantsiy v organizme. Terapevticheskiy Arkhiv. 1925;3(1):19–26. (In Russ).
- Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I. J Lipid Res. 2004;45(9):1583–93. doi: 10.1194/jlr.r400003-jlr200
- Püllmann A. [Feodor Lynen and Konrad Bloch. Nobel Prize winners for medicine and physiology, 1964]. Münch Med Wochenschr. 1965; 107(35):1666–9.
- Bloch K. The biological synthesis of cholesterol. Science. 1965; 150(3692):19–28. doi: 10.1126/science.150.3692.19
- Bucher NL, Overath P, Lynen F. Beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 1960;40:491–501. doi: 10.1016/0006-3002(60)91390-1
- Gofman JW, Glazier F, Tamplin A, et al. Lipoproteins, coronary heart disease, and atherosclerosis. Physiol Rev. 1954;34(3):589–607. doi: 10.1152/physrev.1954.34.3.589
- Gofman JW, Lindgren FT, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem. 1949;179(2):973–9.
- Gofman JW, Delalla O, Glazier F, et al. The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. J Clin Lipidol. 2007;1(2):104–41. doi: 10.1016/j.jacl.2007.03.001
- Steinberg D, Witztum JL. Oxidized Low-Density Lipoprotein and Atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(12):2311–6. doi: 10.1161/atvbaha.108.179697
- Endo A, Kuroda M, Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72(2):323–6. doi: 10.1016/0014-5793(76) 80996-9
- Kotlyarov SN, Kotlyarova AA. Role of lipid metabolism and systemic inflammation in the development of atherosclerosis in animal models. I. P. Pavlov Russian Medical Biological Herald. 2021;29(1):134–46. (In Russ). doi: 10.23888/PAVLOVJ2021291134-146
- Alberts AW, Chen J, Kuron G, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA. 1980;77(7):3957–61. doi: 10.1073/pnas.77.7.3957
- Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–31. doi: 10.1126/science.175.4023.720
- Filippini A, D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules. 2020;10(9): 1218. doi: 10.3390/biom10091218
- Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27(17):6197–202. doi: 10.1021/bi00417a001
- Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol. 2021;8:614472. doi: 10.3389/fcell.2020.614472
- Tran J, Magenau A, Rodriguez M, et al. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One. 2016;11(3):e0151556. doi: 10.1371/journal.pone.0151556
- Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol. 2003;547(Pt 1):21–33. doi: 10.1113/jphysiol.2002.031534
- Krishna A, Sengupta D. Interplay between Membrane Curvature and Cholesterol: Role of Palmitoylated Caveolin-1. Biophys J. 2019; 116(1):69–78. doi: 10.1016/j.bpj.2018.11.3127
- Mineo C, Shaul PW. Regulation of eNOS in caveolae. Adv Exp Med Biol. 2012;729:51–62. doi: 10.1007/978-1-4614-1222-9_4
- Li Q, Zhang Q, Wang M, et al. Eicosapentaenoic acid modifies lipid composition in caveolae and induces translocation of endothelial nitric oxide synthase. Biochimie. 2007;89(1):169–77. doi: 10.1016/j.biochi.2006.10.009
- Westerterp M, Tsuchiya K, Tattersall IW, et al. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol. 2016;36(7):1328–37. doi: 10.1161/atvbaha.115.306670
- Sinha B, Köster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144(3):402–13. doi: 10.1016/j.cell.2010.12.031
- Keren K. Cell motility: the integrating role of the plasma membrane. Eur Biophys J. 2011;40(9):1013–27. doi: 10.1007/s00249-011-0741-0
- Giddens DP, Zarins CK, Glagov S. The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J Biomech Eng. 1993;115(4B):588–94. doi: 10.1115/1.2895545
- Cameron JN, Mehta OH, Michail M, et al. Exploring the relationship between biomechanical stresses and coronary atherosclerosis. Atherosclerosis. 2020;302:43–51. doi: 10.1016/j.athero sclerosis.2020.04.011
- Gimbrone MA Jr, García–Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;22(1):9–15. doi: 10.1016/j.carpath.2012.06.006
- Fernandes DC, Araujo TLS, Laurindo FRM, et al. Chapter 7. Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis. In: Da Luz PL, Libby P, Laurindo FRM, et al., editors. Endothelium and Cardiovascular Diseases. Vascular Biology and Clinical Syndromes. Mica Haley, Sao Paolo: Academic Press; 2018. P. 85–95. doi: 10.1016/B978-0-12-812348-5.00007-6
- Haidekker MA, L’Heureux N, Frangos JA. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol. 2000;278(4):H1401–6. doi: 10.1152/ajpheart.2000.278.4.h1401
- Yamamoto K, Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J Cell Sci. 2013;126(Pt 5):1227–34. doi: 10.1242/jcs.119628
- Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci. 2021;22(21):11545. doi: 10.3390/ijms222111545
- Serhan CN. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu Rev Immunol. 2007;25:101–37. doi: 10.1146/annurev.immunol. 25.022106.141647
- Kasikara C, Doran AC, Cai B, et al. The role of non-resolving inflammation in atherosclerosis. J Clin Invest. 2018;128(7):2713–23. doi: 10.1172/jci97950
- Brezinski DA, Nesto RW, Serhan CN. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation. 1992;86(1):56–63. doi: 10.1161/01.cir.86.1.56
- Serhan CN, Jain A, Marleau S, et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996;98(10):2201–8. doi: 10.1172/jci119029
- Serhan CN, Jain A, Marleau S, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171(12):6856–65. doi: 10.4049/jimmunol.171.12.6856
Supplementary files
