Comparative study of orbital volumes according to multispiral computed tomography data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: It is believed that accurate reconstruction of the correct anatomy of the orbital bony walls, restoration of symmetry and volume are necessary for a favorable functional prognosis and elimination of an aesthetic defect. The main problem when estimating orbital volume is its complex anatomy. Scientists use various methods to determine orbital volume, and in reviews comparing various methods for calculating orbital volumes, there is no data on which orbital volumetric method is the most accurate, since each of them has both advantages and disadvantages.

AIM: The aim of this study is the analysis and the comparison of orbital volumes according to multispiral computed tomography data of healthy patients without bone-traumatic changes of orbital walls.

MATERIALS AND METHODS: To measure the volume of orbits, 50 random patients were selected who were examined in the radiology department No. 2 of the University Clinical Hospital No. 1 of the Sechenov University from 2023 to 2024 and who underwent multispiral computed tomography of the facial skeleton for indications unrelated to orbital conditions. Computed tomography data from 25 women and 25 men of different ages (from 18 to 85 years old) were analyzed. A total of 8 groups were formed depending on gender and age: group 1 — women 18–25 years old, group 2 — men 18–25 years old, group 3 — women 26–35 years old, group 4 — men 26–35 years old, group 5 — women 36–50 years old, group 6 — men 36–50 years old, group 7 — women 51 and older, group 8 — men 51 and older. Multispiral computed tomography of the facial skeleton was performed using the Aquilion One 640 CT scanner (Japan) with 0.5 slice thickness in bone and soft tissue windows, to be able to calculate orbital volumes at the workstation, all bone contours of the orbits were marked on each axial slice, starting from the upper wall to the bottom of the orbit with a representation of the orbital volumes in ml.

RESULTS: The difference in the volumes of the right and left orbits of 0.5 ml or more was detected in 5 women out of 25 cases, among men the difference was present in 12 cases out of 25; a difference in volumes of more than 1 ml was noted in 1 woman and 2 men; a difference of more than 1.5 ml was not observed in any study group. The orbital asymmetry coefficient in women ranged from 0 ml to 1.21 ml, in men — from 0.08 ml to 1.19 ml, in women, the average volume of both orbits is less than in men. It was also detected that the volume of orbits increases with age, both in men and women.

CONCLUSIONS: Considering that the majority of patients had differences in orbital volumes of up to 1.0 ml, we agree with studies that indicate the possibility of using a healthy contralateral orbit as a guideline when planning reconstructive surgery. However, for planning surgical treatment, it is recommended to use manual contouring, as this allows the most accurate reproducibility of the bone boundaries of the orbit, although it requires more time than semi- and automatic segmentation. Also, the advantages of the used method for calculating the volumes of orbits in this study include reproducibility on any workstation from different manufacturers, since the method is carried out on a standard tomograph workstation and does not require any additional software.

About the authors

Dmitry V. Davydov

National Medical Research Radiologiсal Center

Email: d-davydov3@yandex.ru
ORCID iD: 0000-0002-8025-4830
SPIN-code: 1368-2453

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Nataliya S. Serova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: dr.serova@yandex.ru
ORCID iD: 0000-0003-2975-4431
SPIN-code: 4632-3235

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow

Olga A. Kakorina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: 20.olgak.02@mail.ru
ORCID iD: 0009-0000-9267-5248
Russian Federation, Moscow

Olga Yu. Pavlova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: dr.olgapavlova@gmail.com
ORCID iD: 0000-0001-8898-3125
SPIN-code: 8326-0220

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Davydov DV, Serova NS, Pavlova OYu. Risk prediction of posttraummatic enophthalmos development on the basis of orbital volume calculations using multislice computed tomography data. Ophthalmology Reports. 2018;11(3):26–33. EDN: YQIDCH doi: 10.17816/OV11326-33
  2. Sigron GR, Britschgi CL, Gahl B, Thieringer FM. Insights into orbital symmetry: a comprehensive retrospective study of 372 computed tomography scans. J Clin Med. 2024;13(14):1041. doi: 10.3390/jcm13041041
  3. Gorbachev DS, Poritsky YuV. Diagnosis and treatment of diseases and injuries of the orbit and lacrimal ducts (historical essay on the 195th anniversary of the first Russian Department of Ophthalmology of the Military Medical Academy). Bulletin of the National Medical-Surgical Center named after N.I. Pirogov. 2014;9(2):19–24. EDN: WZCGJP
  4. Davydov DV, Levchenko OV, Drobyshev AYu, Mikhailyukov VM. Frameless navigation in the surgical treatment of post-traumatic deformities and orbital defects. Practical Medicine. 2012;(4–2):187–191. EDN: PCHGQX
  5. Shyu VB, Hsu CE, Chen CH, Chen CT. 3D-assisted quantitative assessment of orbital volume using an open-source software platform in a Taiwanese population. PLoS ONE. 2015;10(3):e0119589. doi: 10.1371/journal.pone.0119589
  6. Hartwig S, Nissen MC, Voss JO, et al. Clinical outcome after orbital floor fracture reduction with special regard to patient’s satisfaction. Chin J Traumatol. 2019;22(3):155–160. doi: 10.1016/j.cjtee.2019.01.002
  7. Hahn HM, Jung YK, Lee IJ, et al. Revisiting bilateral bony orbital volumes comparison using 3D reconstruction in Korean adults: a reference study for orbital wall reconstruction, 3D printing, and navigation by mirroring. BMC Surg. 2023;23(1):351. doi: 10.1186/s12893-023-02268-0
  8. Cole P, Boyd V, Banerji S, Hollier LH. Comprehensive management of orbital fractures. Plast Reconstr Surg. 2007;120(Suppl 2): 57S-63S. doi: 10.1097/01.prs.0000260752.20481.b4
  9. Chi MJ, Ku M, Shin KH, Baek S. An analysis of 733 surgically treated blowout fractures. Ophthalmologica. 2009;224(3):167–175. doi: 10.1159/000238932
  10. Gushchina MB, Afanasyeva DS. Post-traumatic enophthalmos: problems of diagnosis and rehabilitation. Clinical Ophthalmology. 2019;19(4):252–256. EDN: TOHUBI doi: 10.32364/2311-7729-2019-19-4-252-256
  11. Yab K, Tajima S, Ohba S. Displacements of eyeball in orbital blowout fractures. Plast Reconstr Surg. 1997;100(6):1409–1417. doi: 10.1097/00006534-199711000-00005
  12. Nikolaenko VP, Astakhov YuS. Part 1. Epidemiology and classification of orbital fractures. Clinic and diagnosis of fractures of the lower wall of the orbit. Ophthalmology Reports. 2009;2(2):56–70. EDN: KVPHLZ
  13. Sigron GR, Barba M, Chammartin F, et al. Functional and cosmetic outcome after reconstruction of isolated, unilateral orbital floor fractures (blow-out fractures) with and without the support of 3D-printed orbital anatomical models. J Clin Med. 2021;10(16):3509. doi: 10.3390/jcm10163509
  14. Erdoğan K, Tatlisumak E, Ovali GY, et al. Age- and sex-related morphometric changes and asymmetry in the orbito-zygomatic region. J Craniofac Surg. 2021;32(2):768–770. doi: 10.1097/SCS.0000000000007008
  15. Chon B, Zhang KR, Hwang CJ, Perry JD. Longitudinal changes in adult bony orbital volume. Ophthal Plast Reconstr Surg. 2020;36(3):243–246. doi: 10.1097/IOP.0000000000001519
  16. Ugradar S, Lambros V. Orbital volume increases with age: a computed tomography-based volumetric study. Ann Plast Surg. 2019;83(6):693–696. doi: 10.1097/SAP.0000000000001929
  17. Erkoç MF, Öztoprak B, Gümüş C, et al. Exploration of orbital and orbital soft-tissue volume changes with gender and body parameters using magnetic resonance imaging. Exp Ther Med. 2015;9(5): 1991–1997. doi: 10.3892/etm.2015.2313
  18. Andrades P, Cuevas P, Hernández R, et al. Characterization of the orbital volume in normal population. J Craniomaxillofac Surg. 2018;46(4):594–599. doi: 10.1016/j.jcms.2018.02.003
  19. Tasman W, Jaeger EA. Duane’s ophthalmology. Chapter 32: embryology and anatomy of the orbit and lacrimal system. Lippincott / Williams & Wilkins. 2007.
  20. Ji Y, Qian Z, Dong Y, et al. Quantitative morphometry of the orbit in Chinese adults based on a three-dimensional reconstruction method. J Anat. 2010;217(5):501–506. doi: 10.1111/j.1469-7580.2010.01286.x
  21. McGurk M, Whitehouse RW, Taylor PM, Swinson B. Orbital volume measured by a low-dose CT scanning technique. Dentomaxillofac Radiol. 1992;21(2):70–72. doi: 10.1259/dmfr.21.2.1397459
  22. Osaki TH, de Castro DK, Yabumoto C, et al. Comparison of methodologies in volumetric orbitometry. Ophthalmic Plast Reconstr Surg. 2013;29(6):431–436.
  23. Wagner ME, Gellrich NC, Friese KI, et al. Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts. Int J Comput Assist Radiol Surg. 2016;11(1):1–9. doi: 10.1007/s11548-015-1228-8
  24. Furuta M. Measurement of orbital volume by computed tomography: especially on the growth of the orbit. Jpn J Ophthalmol. 2001;45(6):600–606. doi: 10.1016/s0021-5155(01)00419-1
  25. Friedrich RE, Bruhn M, Lohse C. Cone-beam computed tomography of the orbit and optic canal volumes. J Craniomaxillofac Surg. 2016;44(9):1342–1349. doi: 10.1016/j.jcms.2016.06.003
  26. Kwon J, Barrera JE, Most SP. Comparative computation of orbital volume from axial and coronal CT using three-dimensional image analysis. Ophthalmic Plast Reconstr Surg. 2010;26(1):26–29. doi: 10.1097/IOP.0b013e3181b80c6a
  27. Koppel DA, Foy RH, McCaul JA, et al. The reliability of “Analyze” software in measuring orbital volume utilizing CT-derived data. J Craniomaxillofac Surg. 2003;31(2):88–91. doi: 10.1016/s1010-5182(02)00170-1
  28. Regensburg NI, Kok PH, Zonneveld FW, et al. A new and validated CT-based method for the calculation of orbital soft tissue volumes. Invest Ophthalmol Vis Sci. 2008;49(5):1758–1762. doi: 10.1167/iovs.07-1030
  29. Sentucq C, Schlund M, Bouet B, et al. Overview of tools for the measurement of the orbital volume and their applications to orbital surgery. J Plast Reconstr Aesthet Surg. 2021;74(3):581–591. doi: 10.1016/j.bjps.2020.08.101
  30. Lieger O, Schaub M, Taghizadeh E, Büchler P. How symmetrical are bony orbits in humans? J Oral Maxillofac Surg. 2019; 77(1):118–125. doi: 10.1016/j.joms.2018.08.018
  31. Amin D, Jeong J, Manhan AJ, Bouloux GF, Abramowicz S. Do racial differences in orbital volume influence the reconstruction of orbital trauma. J Oral Maxillofac Surg. 2022;80(1):121–126. doi: 10.1016/j.joms.2021.07.030
  32. Pessa JE, Zadoo VP, Yuan C, et al. Concertina effect and facial aging: nonlinear aspects of youthfulness and skeletal remodeling, and why, perhaps, infants have jowls. Plast Reconstr Surg. 1999;103(2):635–644. doi: 10.1097/00006534-199902000-00042
  33. Kahn DM, Shaw RB. Aging of the bony orbit: a three-dimensional computed tomographic study. Aesthet Surg J. 2008;28(3):258–264. doi: 10.1016/j.asj.2008.02.007
  34. Li Z, Chen K, Yang J, et al. Deep learning-based CT radiomics for feature representation and analysis of aging characteristics of Asian bony orbit. J Craniofac Surg. 2022;33(1):312–318. doi: 10.1097/SCS.0000000000008198

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. MSCT. Image processing for orbital volume measurement: a — axial section, bone window mode, marking of the orbital bone contours; b — coronal reconstruction, bone window mode, marking of the orbital bone contours; c — 3D-reconstruction, volumes of the right and left orbits in mathematical units (ml)

Download (145KB)
3. Fig. 2. MSCT. Image processing for orbital volume measurement. The volume of the right orbit was 26.93 ml, the volume of the left orbit was 26.95 ml, the difference was 0.02 ml

Download (198KB)
4. Fig. 3. MSCT. Image processing for orbital volume measurement. The volume of the right orbit was 25.69 ml, the volume of the left orbit was 24.48 ml, the difference was 1.21 ml

Download (118KB)
5. Fig. 4. Distribution of orbital volume values by groups

Download (141KB)
6. Fig. 5. The incidence of asymmetry among men and women according to the results of the study

Download (75KB)
7. Fig. 6. The average volume of the right and left orbits in women and men

Download (90KB)
8. Fig. 7. The average volume of orbits in different age and gender groups

Download (153KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies