Current approaches to the problem of carrier selection for limbal stem cells cultivation in the treatment of limbal stem cell deficiency

Cover Page

Cite item

Full Text

Abstract

Diseases and damages of the ocular surface are one of the common causes of decreased vision and blindness. Dysfunction or death of limbal epithelial stem cells (LESC) plays an important role in the development of pathological processes in these conditions, which leads to the development of the limbal stem cell deficiency (LSCD). Currently, one of the methods to treat LSCD is a transplantation of cultured ex vivo LESC. The most common carriers for the cultivation of LESC in the world is the amniotic membrane (AM). However, the presence of certain disadvantages in using AM for the cultivation of LESC compels to search new types of carriers made from biological or synthetic materials. In this review, we have analyzed various types of carriers: collagen, fibrin, chitosan with gelatin, silk fibroin, keratin, contact lenses, polylactide-co-glycolide, polycaprolactone, and the possibility of their application as carriers for the LESC cultivation followed by transplantation on the ocular surface is considered.

About the authors

Alexey N. Kulikov

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: alexey.kulikov@mail.ru

MD, PhD, DMedSc, Professor, Head of the Department. Ophthalmology Department

Russian Federation, Saint Petersburg

Sergey V. Churashov

S.M. Kirov Military Medical Academy

Email: Churashoff@mail.ru

MD, PhD, DMedSc, Assistant Professor. Ophthalmology Department

Russian Federation, Saint Petersburg

Valeriy F. Chernysh

S.M. Kirov Military Medical Academy

Email: Churashoff@mail.ru

MD, PhD, DMedSc, Assistant professor, Honoured Doctor. Ophthalmology Department

Russian Federation, Saint Petersburg

Miralda I. Blinova

Institute of Cytology of the Russian Academy of Science

Email: mira.blinova@mail.ru

PhD, Candidate of Biological Science, Group leader, Group of Cells Biotechnology

Russian Federation, Saint Petersburg

Olga I. Alexandrova

Institute of Cytology of the Russian Academy of Science

Email: elga.aleks@gmail.com

Assistant of Group of Cells Biotechnology

Russian Federation, Saint Petersburg

Vadim V. Karpovich

S.M. Kirov Military Medical Academy

Email: yalovelife@mail.ru

Resident. Ophthalmology Department

Russian Federation, Saint Petersburg

Yulia I. Khorolskaya

Institute of Cytology of the Russian Academy of Science

Email: juliya_khorolskaya@mail.ru

PhD Student of Group of Cells Biotechnology

Russian Federation, Saint Petersburg

References

  1. Агапов И.И., Мойсенович M.M., Васильева T.B., и др. Биодеградируемые матриксы из регенерированного шёлка bombix mori // Доклады Академии наук. – 2010. – Т. 433. – № 5. – C. 1–4. [Agapov II, Moysenovich MM, Vasil’eva TV, et al. Doklady Akademii nauk. 2010;433(5):1-4. (In Russ.)]
  2. Ботабекова Т.К., Канафьянова Э.Г., Жургумбаева Г.К., и др. Отечественный витреосинеретик VITRENAL и микроинвазивная хирургия в лечении пролиферативной диабетической ретинопатии, осложнённой тракционной отслойкой сетчатки // РМЖ. Клиническая офтальмология. – 2011. – № 3. – С. 94–95. [Botabekova TK, Kanaf’yanova EG, Zhurgumbaeva GK, et al. Otechestvennyi vitreosineretik VITRENAL i mikroinvazivnaya khirurgiya v lechenii proliferativnoi diabeticheskoi retinopatii, oslozhnennoi traktsionnoi otsloikoi setchatki. RMZh. Klinicheskaya oftal’mologiya. 2011;(3):94-95. (In Russ.)]
  3. Гальбрайх Л.С. Хитин и хитозан: строение, свойства, применение // Соросовский образовательный журнал. – 2001. – Т. 7. – № 1. – С. 51–56. [Gal’braikh LS. Khitin i khitozan: stroenie, svoistva, primenenie. Sorosovskii obrazovatel’nyi zhurnal. 2001;7(1):51-56. (In Russ.)]
  4. Каспаров А.А. Лечение важнейших заболеваний роговицы / Материалы VIII съезда офтальмологов России. Москва, 2005 г. – М., 2005. – С. 450–451. [Kasparov AA. Lechenie vazhneishikh zabolevanii rogovitsy. (Conference proceedings) Materialy VIII s»ezda oftal’mologovRossii. Moskva, 2005. Moscow; 2005. P. 450-451. (In Russ.)]
  5. Либман Е.С., Шахова Е.В. Слепота и инвалидность по зрению в населении России / Съезд офтальмологов России: тезисы докладов. – М., 2005. – Т. 8. – С. 78–79. [Libman ES, Shakhova EV. Slepota i invalidnost’ po zreniyu v naselenii Rossii. (Conference proceedings) S’’ezd oftal’mologov Rossii. Moscow; 2005. Vol. 8. P. 78-79. (In Russ.)]
  6. Майчук Ю.Ф. Основные тенденции в эпидемиологии и терапии глазных инфекций / Тезисы VIII съезда офтальмологов России. Июнь 01–04, 2005; Москва. – М.: Меж отраслевой научно-технический комплекс Микрохирургия глаза им. академика С.Н. Фёдорова, 2005. – С. 92–93. [Maichuk YuF. Osnovnye tendentsii v epidemiologii i terapii glaznykh infektsii. (Conference proceedings) VIII s’’ezd oftal’mologov Rossii; 2005 June 01-04; Moscow. Moscow: Mezhotraslevoy nauchno-tekhnicheskiy kompleks Mikro khirurgiya glaza im. akademika S.N. Fedorova; 2005. P. 92-93. (In Russ.)]
  7. Нечаев Э.А. Взрывные поражения: Руководство для врачей и студентов / Под ред. чл.-корр. РАМН проф. Э.А. Нечаева. – СПб.: Фолиант, 2002. – 656 с. [Nechaev EA. Vzryv nye porazheniya: Rukovodstvo dlya vrachei i studentov. Ed by E.A. Nechaev. Saint Petersburg: Foliant; 2002. 656 p. (In Russ.)]
  8. Халимов А.Р. Офтальмологический раствор для кросс линкинга коллагена роговицы с рибофлавином и хитозаном // Вестник Оренбургского государственного университета. – 2012. – № 12 (148). – С. 223–224. [Kha limov AR. Ophthalmological solution for corneal collagen crosslinking with riboflavin and chitosan. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2012;(12):223-224. (In Russ.)]
  9. Ang LP, Cheng ZY, Beuerman RW, et al. The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly (ε-caprolactone) membrane substrate. Invest Ophthalmol Vis Sci. 2006;47:105-12. doi: 10.1167/iovs.05-0512.
  10. Ashkenas J, Muschler J, Bissell MJ. The Extracellular Matrix in Epithelial Biology: Shared Molecules and Common Themes in Distant Phyla. Developmental Biology. 1996;180(2):10.1006/dbio.1996.0317. doi: 10.1006/dbio.1996.0317.
  11. Basu S, Ali H, Sangwan VS. Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2012;153(4):643-50,650.e1-2. doi: 10.1016/j.ajo.2011.09.016.
  12. Borrelli M, Reichl S, Feng Y, et al. In vitro characterization and ex vivo surgical evaluation of human hair keratin films in ocular surface reconstruction after sterilization processing. J Mater Sci Mater Med. 2013;24(1):221-30. doi: 10.1007/s10856-012-4774-4.
  13. Bourcier T, Berbar T, Paquet S, et al. Characterization and functionality of CXCR4 chemokine receptor and SDF-1 in human corneal fibroblasts. Mol Vis. 2003;9:96-102.
  14. Dai NT, Williamson MR, Khammo N, et al. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263-4271. doi: 10.1016/j.biomaterials.2003.11.022.
  15. de la Mata A, Nieto-Miguel T, López-Paniagua, et al. Chitosan-gelatin biopolymers as carrier substrata for limbal epithelial stem cells. J Mater Sci Mater Med. 2013 Dec;24(12):2819-29. doi: 10.1007/s10856-013-5013-3.
  16. Deshpande P, McKean R, Blackwood KA, et al. Using poly(lactide-coglycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea. Regen Med. 2010;5(3):395-401. doi: 10.2217/rme.10.16.
  17. Deshpande P, Ramachandran C, Sefat F, et al. Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials. 2013;34(21):5088-106. doi: 10.1016/j.biomaterials.2013.03.064.
  18. Di Girolamo N, Bosch M, Zamora K, et al. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation. 2009;87(10):1571-1578. doi: 10.1097/TP.
  19. b013e3181a4bbf2.
  20. Di Girolamo N, Bosch M, Zamora K, et al. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation. 2009;87:1571-1578.
  21. Girolamo ND, Chui J, Wakefield D, Coroneo MT. Cultured human ocular surface epithelium on therapeutic contact lenses. The British Journal of Ophthalmology. 2007;91(4):459-464. doi: 10.1136/bjo.2006.103895.
  22. Feng Y, Borrelli M, Reichl S, et al. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res. 2014;39(6):541-52. doi: 10.3109/02713683.2013.853803.
  23. Geggel HS, Frienid J, Thoft RA. Collagen gel for ocular surface. Invest Ophthalmol Vis Sci. 1985;26(6):901-905.
  24. Gore A, Horwitz V, Gutman H, et al. Cultivation and characterization of limbal epithelial stem cells on contact lenses with a feeder layer: toward the treatment of limbal stem cell deficiency. Cornea. 2014;33(1):65-71. doi: 10.1097/ICO.
  25. Higa K, Shimazaki J. Recent advances in cultivated epithelial transplantation. Cornea. 2008;27(Suppl.1):41-7. doi: 10.1097/ICO.0b013e31817f358e.
  26. Higa K, Takeshima N, Moro F, et al. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. J Biomater Sci Polym Ed. 2011;22(17):2261-76. doi: 10.1163/092050610X538218.
  27. Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol. 2005;120(3):327-339. doi: 10.1016/j.jbiotec.2005.
  28. 033.
  29. Liu W, Merrett K, Griffith M, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29(9):1147-1158. doi: 10.1016/j.biomaterials.
  30. 11.011.
  31. Liu Y, Griffith M, Watsky MA, et al. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules. 2006;7(6):1819-28. doi: 10.1021/bm060160o.
  32. López-León T, Carvalho EL, Seijo B, et al. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Сolloid Interface Sci. 2005;283(2):344-51. doi: 10.1016/j.jcis.2004.08.186.
  33. Lovett ML, Cannizzaro C, Daheron L, et al. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28(35):5271-9. doi: 10.1016/j.biomaterials.2007.08.008.
  34. Lynn AK, Yannas IV, Bonfield W. Antigenity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71(2):343-53. Review. doi: 10.1002/jbm.b.30096.
  35. Mi S, Chen B, Wright B, Connon CJ. Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. J Biomed Mater Res A. 2010;95(2):447-453. doi: 10.1002/jbm.
  36. a.32861.
  37. Pellegrini G, Ranno R, Stracuzzi G, et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999;68(6):868-79. doi.org/10.1097/00007890-199909270-00021.
  38. Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147-155. doi: 10.1056/NEJMoa0905955.
  39. Redenti S, Tao S, Yang J, et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly (ecaprolactone) nanowire scaffold. J Ocul Biol Dis Infor. 2008;1(1):19-29. doi: 10.1007/s12177-008-9005-3.
  40. Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. Biomaterials. 2011 May;32(13):3375-86. doi: 10.1016/j.biomaterials.2011.01.052.
  41. Sharma S, Mohanty S, Gupta D, et al. Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Molecular Vision. 2011;17:2898-2910.
  42. Talbot M, Carrier P, Giasson CJ, et al. Autologous transplantation of rabbit limbal epithelia cultured on fibrin gels for ocular surface reconstruction. Mol Vis. 2006 Feb 1;12:65-75.
  43. Tang Q, Luo C, Lu B, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater. 2017 Oct 1;61:101-113. doi: 10.1016/j.actbio.2017.08.001.
  44. Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-4827. doi: 10.1016/j.biomaterials.2004.11.057.
  45. Xu T, Yang Y, Yu Y. Efficacy, safety, and biodegradation of a degradable scleral buckle of chitosan-gelatin polymer in rabbits. Re tina. 2013;33(5):1062-9. doi: 10.1097/IAE.0b013e3182733a64.
  46. Yamauchi K, Maniwa M, Mori T. Cultivation of fibroblast cells on keratincoated substrata. J Biomater Sci Polym Ed. 1998;9(3):
  47. -70. doi: 10.1163/156856298x00640.

Copyright (c) 2018 Kulikov A.N., Churashov S.V., Chernysh V.F., Blinova M.I., Alexandrova O.I., Karpovich V.V., Khorolskaya Y.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies