The evaluation of cytoxicity of ocular hypotensive therapy to cultured human corneal epithelial cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Corneal epithelial defect is a corneal epithelial cells’ (CEpC) disruption of various origin. In patients with corneal epithelial defect, glaucoma is a frequent concomitant disease demanding prescription of hypotensive medications, most of which containing benzalkonium chloride.

AIM: The aim of this study is to evaluate cytotoxicity of antiglaucoma drugs, as well as benzalkonium chloride (BAK), to human CEpC in vitro.

MATERIALS AND METHODS: The study was carried out on primary cultures of human CEpC. Cytotoxicity of dorzolamide, brimonidine, timolol (dilutions 1/100, 1/50, 1/20, 1/10, a 24-hour exposure) and of BAK was estimated on the model of intact epithelium (monolayer). Benzalkonium chloride was evaluated in concentrations equals to its concentration in tested ophthalmic solutions. Cytotoxicity of dorzolamide, brimonidine, timolol (dilutions 1/100, 1/20, a 48-hour exposure) was evaluated on the model of corneal epithelial defect (damage of the monolayer). The medication’s cytotoxicity was estimated by cellular changes (phase-contrast microscopy) and by the MTS-test’s results.

RESULTS: Among BAK-free medications: dorzolamide (1/50, 1/20, 1/10 dilutions), brimonidine (1/10 dilution) — induce CEpCs’ pathological changes, whereas timolol (all tested dilutions) is non-toxic. BAK-preserved drugs: dorzolamide, brimonidine, timolol (1/100, 1/50, 1/20, 1/10 dilutions) — induce CEpCs’ damage, their viability reduction, and corneal epithelial defect closure inhibition. BAK shows similar effect in tested concentrations.

CONCLUSIONS: Cytotoxicity of antiglaucoma drugs is attributed to their component — benzalkonium chloride. Administration of preserved drugs is not reasonable in eyes with corneal epithelial defect of various origin.

About the authors

Natalia V. Fisenko

M.M. Krasnov Scientific Research Institute of Eye Diseases

Email: natfisenko@mail.ru
ORCID iD: 0000-0001-7198-4498
SPIN-code: 9750-1529

MD, Cand. Sci. (Medicine)

Russian Federation, 11 A, B, Rossolimo st., Moscow, 119021

Yusef N. Yusef

M.M. Krasnov Scientific Research Institute of Eye Diseases; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: info@eyeacademy.ru
ORCID iD: 0000-0003-4043-456X
SPIN-code: 6891-6138

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow; Moscow

Anastasia M. Subbot

M.M. Krasnov Scientific Research Institute of Eye Diseases

Email: kletkagb@gmail.com
ORCID iD: 0000-0002-8258-6011
SPIN-code: 3898-2570

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Grigory A. Osipyan

M.M. Krasnov Scientific Research Institute of Eye Diseases

Author for correspondence.
Email: Gregor79@yandex.ru
ORCID iD: 0000-0002-1056-4331
SPIN-code: 1039-0470

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190–194. doi: 10.4103/ijo.IJO_646_17
  2. Dahlgren MA. Persistent epithelial defects. In: Albert DM, Miller JW, editors. Albert and Jakobiec’s principles and practice of ophthalmology. Philadelphia: Elsevier, 2008. P. 749–759.
  3. Vaidyanathan U, Hopping GC, Liu HY, et al. Persistent corneal epithelial defects: a review article. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):163–176.
  4. European Glaucoma Society terminology and guidelines for glaucoma, 5th edition. Br J Ophthalmol. 2021;105(S1):1–169. doi: 10.1136/bjophthalmol-2021-egsguidelines
  5. Steven DW, Alaghband P, Lim KS. Preservatives in glaucoma medication. Br J Ophthalmol. 2018;102(11):1497–1503. doi: 10.1136/bjophthalmol-2017-311544
  6. Goldstein MH, Silva FQ, Blender N, et al. Ocular benzalkonium chloride exposure: problems and solutions. Eye (Lond). 2022;36(2):361–368. doi: 10.1038/s41433-021-01668-x
  7. Thacker M, Sahoo A, Reddy AA, et al. Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research. Indian J Ophthalmol. 2023;71(4):1256–1262. doi: 10.4103/IJO.IJO_2791_22
  8. Ayaki M, Yaguchi S, Iwasawa A, Koide R. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin Exp Ophthalmol. 2008;36(6):553–559. doi: 10.1111/j.1442-9071.2008.01803.x
  9. Fisenko NV, Subbot AM, Fisenko VP. Evaluation of the cytotoxicity of antiglaucoma drugs and auxiliary components against primary culture of human corneal endothelial cells. Experimental and Clinical Pharmacology. 2022;85(8):26–33. (In Russ.) doi: 10.30906/0869-2092-2022-85-8-26-33
  10. Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6): 735–754. doi: 10.1007/s13346-016-0339-2
  11. Durairaj C. Ocular Pharmacokinetics. In: Whitcup S, Azar D, editors. Pharmacologic therapy of ocular disease. Handbook of experimental pharmacology. Vol. 242. Springer, Cham, 2017. P. 31–55. doi: 10.1007/164_2016_32
  12. Abysheva LD, Avdeev RV, Alexandrov AS, et al. Influence of local hypotensive glaucoma therapy on the development and progression of dry eye syndrome. RMJ. Clinical ophthalmology. 2017;17(2):74–82. (In Russ.) doi: 10.21689/2311-7729-2017-17-2-74-82
  13. Andole S, Senthil S. Ocular surface disease and anti-glaucoma medications: various features, diagnosis, and management guidelines. Semin Ophthalmol. 2023;38(2):158–166. doi: 10.1080/08820538.2022.2094714
  14. Pozarowska D, Pozarowski P, Darzynkiewicz Z. Cytometric assessment of cytostatic and cytotoxic effects of topical glaucoma medications on human epithelial corneal line cells. Cytometry B Clin Cytom. 2010;78B(2):130–137. doi: 10.1002/cyto.b.20493
  15. Ammar DA, Noecker RJ, Kahook MY. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofZia-preserved topical glaucoma medications on human ocular epithelial cells. Adv Ther. 2010;27(11):837–845. doi: 10.1007/s12325-010-0070-1
  16. Epstein SP, Ahdoot M, Marcus E, Asbell PA. Comparative toxicity of preservatives on immortalized corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009;25(2):113–119. doi: 10.1089/jop.2008.0098
  17. Meloni M, Cattaneo G, De Servi B. Corneal epithelial toxicity of antiglaucoma formulations: in vitro study of repeated applications. Clin Ophthalmol. 2012;6:1433–1440. doi: 10.2147/OPTH.S35057
  18. Kucukoduk A, Durmus IM, Aksoy M, Karakurt S. Cytotoxic, apoptotic, and oxidative effects of preserved and preservative-free brimonidine in a corneal epithelial cell line. J Ocul Pharmacol Ther. 2022;38(8):576–583. doi: 10.1089/jop.2022.0053
  19. Liang H, Baudouin C, Daull P, et al. In vitro corneal and conjunctival wound-healing assays as a tool for antiglaucoma prostaglandin formulation characterization. Front Biosci (Landmark Ed). 2022;27(5):147. doi: 10.31083/j.fbl2705147

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The morphological picture of human corneal epithelial cells’ culture (model of intact epithelium) after 24-hour exposure to dorzolamide, phase-contrast microscopy, scale 50 μm. Green arrow — spaced cell junctions, blue arrow — cytoplasmic content’s condensation, white arrow — nuclear and cytoplasmic compaction, red arrow — dead cells

Download (313KB)
3. Fig. 2. The morphological picture of human corneal epithelial cells’ culture (model of intact epithelium) after 24-hour exposure to brimonidine, phase-contrast microscopy, scale 50 μm. Blue arrow — cytoplasmic content’s condensation, yellow arrow — nuclear and cytoplasmic condensation, red arrow — dead cells

Download (341KB)
4. Fig. 3. The morphological picture of human corneal epithelial cells’ culture (model of intact epithelium) after 24-hour exposure to timolol, phase-contrast microscopy, scale 50 μm. Yellow arrow — nuclear and cytoplasmic condensation, red arrow — dead cells

Download (323KB)
5. Fig. 4. The morphological picture of human corneal epithelial cells’ culture (model of intact epithelium) after 24-hour exposure to benzalkonium chloride, phase-contrast microscopy, scale — 50 μm. Blue arrow — cytoplasmic content’s condensation, yellow arrow — nuclear and cytoplasmic condensation, red arrow — dead cells

Download (533KB)
6. Fig. 5. The morphological picture of human corneal epithelial cells’ culture (model of corneal epithelial defect) after 48-hour exposure to antiglaucoma drugs, phase-contrast microscopy, scale — 100 μm. Yellow dotted line —the borders of the epithelial defect

Download (586KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies