Stem cell-based technologies in treatment of age-related macular degeneration patients: current state of the problem

Cover Page

Cite item

Full Text

Abstract

Age-related macular degeneration (AMD) is the most common disease of the macula – the area responsible for central vision. With regard to the pathogenesis of AMD, the main focus of most researchers is on the pathological processes occurring in the retinal pigment epithelium (RPE), which is considered as the main target of the disease. For the treatment of the “dry” form of the disease, which accounts for about 90% of all AMD cases, up to now no effective treatment methods were elaborated, while in the therapy of the “wet” form, antiangiogenic therapy, photodynamic therapy, and surgical treatment methods have been used with concrete success. Stem cells, possessing enormous therapeutic potential, are gradually being introduced into medical technologies, including ophthalmology. A number of pre-clinical studies have proven the safety of using cultured cells of the RPE, which gave rise to the beginning of clinical trials of the use of stem cells in the treatment of AMD patients. The review analyzes the data of scientific literature on the current understanding of the pathogenesis of AMD, pathogenetically substantiated therapies, including those using cell-based technologies, prospects and problems of using stem cells in the treatment of AMD patients.

About the authors

Kirill Yu. Gayduk

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: gaidukkukir@gmail.com
SPIN-code: 6540-3323

resident, Ophthalmology Department

Russian Federation, Saint Petersburg

Sergey V. Churashov

S.M. Kirov Military Medical Academy

Email: Churashoff@mail.ru

MD, PhD, DMedSc, Assistant Professor, Professor, Ophthalmology Department

Russian Federation, Saint Petersburg

Alexey N. Kulikov

S.M. Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru

MD, PhD, DMedSc, Professor, Head of the Department, Ophthalmology Department

Russian Federation, Saint Petersburg

References

  1. Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012;379(9827):1728-1738. doi: https://doi.org/10.1016/s0140-6736(12)60282-7.
  2. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106-e116. doi: https://doi.org/10.1016/s2214-109x(13)70145-1.
  3. Lambert NG, El Shelmani H, Singh MK, et al. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res. 2016;54:64-102. doi: https://doi.org/10.1016/j.preteyeres. 2016.04.003.
  4. Ao J, Wood JP, Chidlow G, et al. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol. 2018;46(6):670-686. doi: https://doi.org/10.1111/ceo.13121.
  5. Inana G, Murat C, An W, et al. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. J Transl Med. 2018;16(1):63. doi: https://doi.org/10.1186/s12967-018-1434-6.
  6. Kvanta A. Expression and regulation of vascular endothelial growth factor in choroidal fibroblasts. Curr Eye Res. 2009;14(11):1015-20. doi: https://doi.org/10.3109/02713689508998523.
  7. Hollyfield JG, Bonilha VL, Rayborn ME, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med. 2008;14(2):194-198. doi: https://doi.org/10.1038/nm1709.
  8. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134(3):411-431. doi: https://doi.org/10.1016/s0002-9394(02)01624-0.
  9. Maller JB, Fagerness JA, Reynolds RC, et al. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39(10):1200-1201. doi: https://doi.org/10.1038/ng2131.
  10. Fisher CR, Ferrington DA. Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. Invest Ophthalmol Vis Sci. 2018;59(4): AMD41-AMD47. doi: https://doi.org/10.1167/iovs.18-24289.
  11. Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell. Free Radic Biol Med. 2002;33(5):611-9. doi: https://doi.org/10.1016/s0891-5849(02)00959-0.
  12. Sunness JS. Stem cells in age-related macular degeneration and Stargardt’s macular dystrophy. Lancet. 2015;386(9988):29. doi: https://doi.org/10.1016/s0140-6736(15)61201-6.
  13. Age-Related Eye Disease Study 2 Research G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005-2015. doi: https://doi.org/10.1001/jama.2013.4997.
  14. Chew EY, Clemons TE, Agron E, et al. Long-term effects of vitamins C and E, beta-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology. 2013;120(8):1604-1611e1604. doi: https://doi.org/10.1016/j.ophtha.2013.01.021.
  15. Bird AC. Therapeutic targets in age-related macular disease. J Clin Invest. 2010;120(9):3033-41. doi: https://doi.org/10.1172/JCI42437.
  16. Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897-1908. doi: https://doi.org/10.1056/NEJMoa1102673.
  17. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432-1444. doi: https://doi.org/10.1056/NEJMoa062655.
  18. Бикбов М.М., Файзрахманов Р.Р. Оперативное лечение пациентов с фиброваскулярными мембранами при макулярной дегенерации с частичным восстановлением пигментного эпителия сетчатки // Современные технологии в офтальмологии. – 2017. – № 1. – С. 35-38. [Bikbov MM, Fayzrakhmanov RR. Operativnoe lechenie patsientov s fibrovaskulyarnymi membranami pri makulyarnoy degeneratsii s chastichnym vosstanovleniem pigmentnogo epiteliya setchatki. Sovremennyye tekhnologii v oftal’mologii. 2012;(1):35-37. (In Russ.)]
  19. Radtke ND, Aramant RB, Petry HM, et al. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172-2. doi: https://doi.org/10.1016/j.ajo.2008.04.009.
  20. Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018;4:50. doi: https://doi.org/10.1038/s41421-018-0053-y.
  21. Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27(9):2126-2135. doi: https://doi.org/10.1002/stem.149.
  22. Lund RD, Wang S, Klimanskaya I, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8(3):189-199. doi: https://doi.org/10.1089/clo.2006.8.189.
  23. MacLaren RE, Bennett J, Schwartz SD. Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology. 2016;123(10S): S98-S106. doi: https://doi.org/10.1016/j.ophtha.2016.06.041.
  24. Buchholz DE, Pennington BO, Croze RH, et al. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384-93. doi: https://doi.org/10.5966/sctm.2012-0163.
  25. Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res. 2017;58:1-27. doi: https://doi.org/10.1016/j.preteyeres.2017.01.004.
  26. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396-408. doi: https://doi.org/10.1016/j.stem.2009.07.002.
  27. Klimanskaya I, Hipp J, Rezai KA, et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217-245. doi: https://doi.org/10.1089/clo.2004.6.217.
  28. Brandl C, Zimmermann SJ, Milenkovic VM, et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014;16(3):551-564. doi: https://doi.org/10.1007/s12017-014-8308-8.
  29. Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2(2):205-218. doi: https://doi.org/10.1016/j.stemcr.2013.12.007.
  30. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. doi: https://doi.org/10.1016/j.cell.2007.11.019.
  31. Bhatt NS, Newsome DA, Fenech T, et al. Experimental transplantation of human retinal pigment epithelial cells on collagen substrates. Am J Ophthalmol. 1994;117(2):214-221. doi: https://doi.org/10.1016/s0002-9394(14)73079-x.
  32. Wang H, Leonard DS, Castellarin AA, et al. Short-term study of allogeneic retinal pigment epithelium transplants onto debrided Bruch’s membrane. Invest Ophthalmol Vis Sci. 2001;42(12):2990-2999.
  33. Thomas BB, Zhu D, Zhang L, et al. Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Invest Ophthalmol Vis Sci. 2016;57(6):2877-2887. doi: https://doi.org/10.1167/iovs.16-19238.
  34. Arnhold S, Absenger Y, Klein H, et al. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol. 2007;245(3):414-422. doi: https://doi.org/10.1007/s00417-006-0382-7.
  35. Cuenca N, Fernandez-Sanchez L, McGill TJ, et al. Phagocytosis of photoreceptor outer segments by transplanted human neural stem cells as a neuroprotective mechanism in retinal degeneration. Invest Ophthalmol Vis Sci. 2013;54(10):6745-6756. doi: https://doi.org/10.1167/iovs.13-12860.
  36. Nishida A, Takahashi M, Tanihara H, et al. Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci. 2000;41(13):4268-4274.
  37. Schwartz SD, Anglade E, Lanza R. Stem cells in age-related macular degeneration and Stargardt’s macular dystrophy – Authors’ reply. Lancet. 2015;386(9988):30. doi: https://doi.org/10.1016/s0140-6736(15)61203-x.
  38. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516. doi: https://doi.org/10.1016/s0140-6736(14)61376-3.
  39. Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci. 2016;57(5): ORSFc1-9. doi: https://doi.org/10.1167/iovs.15-18681.
  40. Taskintuna I, Elsayed ME, Schatz P. Update on clinical trials in dry age-related macular degeneration. Middle East Afr J Ophthalmol. 2016;23(1):13-26. doi: https://doi.org/10.4103/0974-9233.173134.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Gayduk K.Y., Churashov S.V., Kulikov A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies