The role of systemic inflammation in heart failure

Cover Page

Cite item

Abstract

The discussion continues about the role of systemic inflammation in the pathogenesis of cardiovascular diseases of ischemic etiology. This article reviews the information on the role of C-reactive protein in patients with atherosclerosis and heart failure in risk stratification for adverse cardiovascular events, including assessment of factors affecting the basal level of highly sensitive C-reactive protein. Research data (MRFIT, MONICA) have demonstrated a relationship between an increased level of C-reactive protein and the development of coronary heart disease. An increase in the serum level of highly sensitive C-reactive protein is observed in arterial hypertension, dyslipidemia, type 2 diabetes mellitus and insulin resistance, which indicates the involvement of systemic inflammation in these disorders. Currently, the assessment of highly sensitive C-reactive protein is used to determine the risk of developing myocardial infarction and stroke. It has been proven that heart failure patients have a high level of highly sensitive C-reactive protein compared with patients without heart failure. The level of C-reactive protein is referred to as modifiable risk factors for cardiovascular diseases of ischemic origin, since lifestyle changes or taking drugs such as statins, non-steroidal anti-inflammatory drugs, glucocorticoids, etc. reduce the level of highly sensitive C-reactive protein. In patients with heart failure with different left ventricular ejection fraction values, it was found that the regression of the inflammatory response is accompanied by an improvement in prognosis, which confirms the hypothesis of inflammation as a response to stress, which has negative consequences for the cardiovascular system.

About the authors

E V Khazova

Kazan State Medical University

Author for correspondence.
Email: hazova_elena@mail.ru
ORCID iD: 0000-0001-8050-2892
SPIN-code: 7013-4320
Scopus Author ID: 57205153574
ResearcherId: O-2336-2016
Russian Federation, Kazan, Russia

O V Bulashova

Kazan State Medical University

Email: boulashova@yandex.ru
ORCID iD: 0000-0002-7228-5848
SPIN-code: 4211-2171
Scopus Author ID: 6507198087
Russian Federation, Kazan, Russia

References

  1. Vasuk U.A., Dudarenko O.P., Uschuk E.N., Schkolnik E.L., Serova M.K. “Cytokine” model of pathogenesis of chronic heart failure and the opportunities of new therapeutic strategy in decompensated patients. Rational pharmacotherapy in cardiology. 2006; 2 (4): 63–70. (In Russ.) doi: 10.20996/1819-6446-2006-2-4-63-70.
  2. Simbirtsev A.S. Cytokines in the pathogenesis of infectious and non-infectious disea­ses in humans. Medical academic journal. 2013; (3): 18–41. (In Russ.) doi: 10.17816/MAJ13318-41.
  3. Munro J.M., Cotran R.S. The pathogenesis of athe­rosclerosis: Atherogenesis and inflammation. Lab. Invest. 1988; 58: 249–261. PMID: 3279259.
  4. Beloborodova N.V., Galina D.Kh., Buslenko N.S. Current know­ledge about the role of infection in genesis of athe­rosclerosis. Terapevticheskiy arkhiv. 2006; (10): 85–89. (In Russ.)
  5. Titov V.N. Commonality of atherosclerosis and inflammation: specificity of atherosclerosis as an inflammatory process. Rossiyskiy kardiologicheskiy zhurnal. 2000; 5 (5): 48–56. (In Russ.)
  6. Moskalev A.V., Sboychakov V.B., Tsygan V.N., Apchel A.V. Chemokines’ role in immunopathogenesis of ­atherosclerosis. Bull. Russian Military Med. Acad. 2018; 20 (1): 195–202. doi: 10.17816/brmma12310.
  7. Becker A.E., de Boer O.J., van Der Wal A.C. The role of inflammation and infection in coronary artery disease. Annu Rev. Med. 2001; 52: 289–297. doi: 10.1146/annurev.med.52.1.289.
  8. Sukmanova I.A., Yakhontov D.A., Pospelova T.I., Kuzins­kaya O.S., Kosoukhov A.P. Clinical picture, morphofunctional parameters and endothelial function in patients with systolic CHF of different age groups. Tsitokiny i vospale­niye. 2010; (9): 30–34. (In Russ.)
  9. Van Linthout S., Tschöpe C. Inflammation — cause or consequence of heart failure or both? Curr. Heart Fail. Rep. 2017; 14: 251–265. doi: 10.1007/s11897-017-0337-9.
  10. Buckley L.F., Abbate A. Interleukin-1 blockade in cardiovascular diseases: a clinical update. Eur. Heart J. 2018; 39: 2063–2069. doi: 10.1093/eurheartj/ehy128.
  11. Buckley L.F., Abbate A. Interleukin-1 blockade in cardiovascular diseases: from bench to bedside. BioDrugs. 2018; 32: 111–118. doi: 10.1007/s40259-018-0274-5.
  12. Conraads V.M., Bosmans J.M., Vrints C.J. Chro­nic heart failure: an example of a systemic chronic inflammatory disease resulting in cachexia. Int. J. Cardiol. 2002; 85 (1): 33–49. doi: 10.1016/s0167-5273(02)00232-2.
  13. Francis G.S. Pathophysiology of chronic heart fai­lure. Am. J. Med. 2001; 110 (7A): 37S–46S. doi: 10.1016/s0002-9343(98)00385-4.
  14. Vanderheyden M., Kersschot E., Paulus W.J. Pro-­inflammatory cytokines and endothelium-dependent vasodilation in the forearm. Serial assessment in patients with congestive heart failure. Eur. Heart J. 1998; 19 (5): 747–752. doi: 10.1053/euhj.1997.0828.
  15. Kapadia S.R., Oral H., Lee J., Nakano M., Taffet G.E., Mann D.L. Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ. Res. 1997; 81 (2): 187–195. doi: 10.1161/01.res.81.2.187.
  16. Ridker P.M. C-Reactive protein: Eighty eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin. Chem. 2009; 55: 209–215. doi: 10.1373/clinchem.2008.119214.
  17. Paleev F.N., Abudeeva I.S., Moskalets O.V., Minchenko B.I., Belokopytova I.S. Nonspecific markers of inflammation in prognostication of the course of ischemic heart disease. Kardiologiya. 2009; (9): 59–65. (In Russ.)
  18. Casas J.P., Shah T., Hingorani A.D., Danesh J., Pepys M.B. C-reactive protein and coronary heart disease: A critical review. J. Intern. Med. 2008; 264 (4): 295–314. doi: 10.1111/j.1365-2796.2008.02015.
  19. Kuller L.H., Tracy R.P., Shaten J., Meilahn E.N. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J. Epidemiol. 1996; 144 (6): 537–547. doi: 10.1093/oxfordjournals.aje.a008963.
  20. Koenig W., Sund M., Fröhlich M., Fischer H.G., Löwel H., Döring A., Hutchinson W.L., Pepys M.B. ­C-­reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Mo­nitoring Trends and Determinants in Cardiovascular Di­sease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999; 99 (2): 237–242. doi: 10.1161/01.cir.99.2.237.
  21. Ledue T.B., Rifai N. Preanalytic and analytic sour­ces of variations in C-reactive protein measurement: implications for cardiovascular disease risk assessment. Clin. Chem. 2003; 49: 1258–1271. doi: 10.1373/49.8.1258.
  22. Roberts W.L., Moulton L., Law T.C., Farrow G., Cooper-Anderson M., Savory J., Rifai N. Evaluation of nine automated high-sensitivity C-reactive protein me­thods: implications for clinical and epidemiological applications. Part 2. Clin. Chem. 2001; 47: 418–425. doi: 10.1093/clinchem/47.3.418.
  23. Ledue T.B., Rifai N. High sensitivity immunoassays for C-reactive protein: promises and pitfalls. Clin. Chem. Lab. Med. 2001; 39: 1171–1176. doi: 10.1515/CCLM.2001.185.
  24. Ockene I.S., Matthews C.E., Rifai N., Ridker P.M., Reed G., Stanek E. Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin. Chem. 2001; 47: 444–450. doi: 10.1093/clinchem/47.3.444.
  25. Ridker P.M., Buring J.E., Rifai N., Cook N.R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Rey­nolds Risk Score. JAMA. 2007; 297: 611–619. doi: 10.1001/jama.297.6.611.
  26. Ridker P.M., Paynter N.P., Rifai N., Gaziano J.M., Cook N.R. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for Men. Circulation. 2008; 118: 2243–2251. doi: 10.1161/CIRCULATIONAHA.108.814251.
  27. Adukauskienė D., Čiginskienė A., Adukauskaitė A., Pentiokinienė D., Šlapikas R., Čeponienė I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina (Kaunas). 2016; 52 (1): 1–10. doi: 10.1016/j.medici.2015.12.001.
  28. Salazar J., Martínez M.S., Chávez-Castillo M., Núñez V., Añez R., Torres Y., Toledo A., Chacín M., Silva C., Pacheco E., Rojas J., Bermúdez V. C-reactive protein: An in-depth look into structure, function, and regulation. Int. Sch. Res. Notices. 2014; 2014: 653045. doi: 10.1155/2014/653045.
  29. Blinova T.V., Rakhmanov R.S., Strakhova L.A., Kolesov S.A. To the issue of predictive significance of C-reactive protein. Medical almanac. 2016; (2): 39–43. (In Russ.)
  30. Verma S., Wang C.H., Lonn E., Charbonneau F., Buithieu J., Title L.M., Fung M., Edworthy S., Robertson A.C., Anderson T.J.; FATE Investigators. Cross-sectional evaluation of brachial artery flow-mediated vasodilation and C-reactive protein in healthy individuals. Eur. Heart J. 2004; 25 (19): 1754–1760. doi: 10.1016/j.ehj.2004.06.039.
  31. Tanveer S., Banu S., Jabir N.R., Khan M.S., Ashraf G.M., Manjunath N.C, Tabrez S. Clinical and angiographic correlation of high-sensitivity C-reactive protein with acute ST elevation myocardial infarction. Exp. Ther. Med. 2016; 12 (6): 4089–4098. doi: 10.3892/etm.2016.3882.
  32. Fomin V.V., Kozlovskaya L.V. C-reactive protein and its importance in cardiological practice. Zhurn. dokaz. med. dlya praktikuyushchikh vrachey. 2003; 5: 70–75. (In Russ.)
  33. Ridker P.M. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001; 103 (13): 1813–1818. doi: 10.1161/01.cir.103.13.1813.
  34. Schiele F., Meneveau N., Seronde M.F., Chopard R., Descotes-Genon V., Dutheil J., Bassand J.P.; Reseau de Cardiologie de Franche Comte. C-reactive protein improves risk prediction in patients with acute coronary syndromes. Eur. Heart J. 2010; 31 (3): 290–297. doi: 10.1093/eurheartj/ehp273.
  35. Fichtlscherer S., Rosenberger G., Walter D.H., Breuer S., Dimmeler S., Zeiher A.M. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation. 2000; 102: 1000–1006. doi: 10.1161/01.cir.102.9.1000.
  36. Kazemi-Saleh D., Koosha P., Sadeghi M., Sarrafzadegan N., Karbasi-Afshar R., Boshtam M., Oveis-Gharan S. Predictive role of adiponectin and high-sensitivity C-reactive protein for prediction of cardiovascular event in an Iranian cohort study: The Isfahan Cohort Study. ARYA Atheroscler. 2016; 12 (3): 132–137. PMID: 27752270.
  37. Sabatine M.S., Morrow D.A., de Lemos J.A., Gibson C.M., Murphy S.A., Rifai N., McCabe C., Antman E.M., Cannon C.P., Braunwald E. Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation. 2002; 105 (15): 1760–1763. doi: 10.1161/01.cir.0000015464.18023.0a.
  38. Van Tassell B.W., Abouzaki N.A., Oddi Erdle C., Carbone S., Trankle C.R., Melchior R.D., Turlington J.S., Thurber C.J., Christopher S., Dixon D.L., Fronk D.T., Thomas C.S., Rose S.W., Buckley L.F., Dinarello C.A., Biondi-Zoccai G., Abbate A. Interleukin-1 ­blockade in acute decompensated heart failure: A randomized, ­double-blinded, placebo-controlled pilot study. J. Cardiovasc. Pharmacol. 2016; 67 (6): 544–551. doi: 10.1097/FJC.0000000000000378.
  39. Yndestad A., Damås J.K., Oie E., Ueland T., Gullestad L., Aukrust P. Systemic inflammation in heart fai­lure — the whys and wherefores. Heart Fail. Rev. 2006; 11: 83–92. doi: 10.1007/s10741-006-9196-2.
  40. Yin W.H., Chen J.W., Jen H.L., Chiang M.C., Huang W.P., Feng A.N., Young M.S., Lin S.J. Independent prognostic value of elevated high-sensitivity C-reactive protein in chronic heart failure. Am. Heart J. 2004; 147 (5): 931–938. doi: 10.1016/j.ahj.2003.11.021.
  41. Örsçelik Ö., Özkan B., Arslan A., Şahin E.E., Sakarya O., Sürmeli O.A., Balcı Fidancı Ş., Çelik A., Çimen B.Y., Özcan İ.T. Relationship between intrarenal renin-angiotensin activity and re-hospitalization in patients with heart failure with reduced ejection fraction. Anatol. J. Cardiol. 2018; 19 (3): 205–212. doi: 10.14744/AnatolJCardiol.2018.68726.
  42. Shah S.J., Marcus G.M., Gerber I.L., McKeown B.H., Vessey J.C., Jordan M.V., Huddleston M., Foster E., Chatterjee K., Michaels A.D. High-sensitivity C-reactive protein and parameters of left ventricular dysfunction. J. Card. Fail. 2006; 12 (1): 61–65. doi: 10.1016/j.cardfail.2005.08.003.
  43. Andryukhin A.N., Frolova E.V. Systemic inflammation in heart failure with preserved systolic function. Ural Medical Journal. 2010; (7): 27–33. (In Russ.)
  44. Tromp J., Khan M.A., Klip I.T., Meyer S., de Boer R.A., Jaarsma T., Hillege H., van Veldhuisen D.J., van der Meer P., Voors A.A. Biomarker profiles in heart fai­lure patients with preserved and reduced ejection fraction. J. Am. Heart Assoc. 2017; 6 (4): e003989. doi: 10.1161/JAHA.116.003989.
  45. Sánchez-Lázaro I.J., Almenar L., Reganon E., Vila V., Martínez-Dolz L., Martínez-Sales V., Moro J., Agüero J., Ortiz-Martínez V., Salvador A. Inflammatory markers in stable heart failure and their relationship with functional class. Int. J. Cardiol. 2008; 129 (3): 388–393. doi: 10.1016/j.ijcard.2007.07.138.
  46. De Boer R.A., Nayor M., de Filippi C.R., Enserro D., Bhambhani V., Kizer J.R., Blaha M.J., Brouwers F.P., Cushman M., Lima J.A.C., Bahrami H., van der Harst P., Wang T.J., Gansevoort R.T., Fox C.S., Gaggin H.K., Kop W.J., Liu K., Vasan R.S., Psaty B.M., Lee D.S., Hillege H.L., Bartz T.M., Benjamin E.J., Chan C., Allison M., Gardin J.M., Januzzi J.L.Jr., Shah S.J., Levy D., Herrington D.M., Larson M.G., van Gilst W.H., Gottdiener J.S., Bertoni A.G., Ho J.E. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018; 3 (3): 215–224. doi: 10.1001/jamacardio.2017.4987.
  47. Nessler J., Nessler B., Golebiowska-Wiatrak R., Palka I., Gackowski A., Kitlinski M., Melander O., Fedorowski A. Serum biomarkers and clinical outcomes in heart fai­lure patients treated de novo with carvedilol. Cardiol. J. 2013; 20 (2): 144–151. doi: 10.5603/CJ.2013.0027.
  48. Joynt K.E., Gattis W.A., Hasselblad V., Fuzaylov S.Y., Serebruany V.L., Gurbel P.A., Gaulden L.H., Fel­ker G.M., Whellan D.J., O'Connor C.M. Effect of angiotensin-converting enzyme inhibitors, beta blockers, statins, and aspirin on C-reactive protein levels in outpatients with heart failure. Am. J. Cardiol. 2004; 93 (6): 783–785. doi: 10.1016/j.amjcard.2003.12.010.
  49. Ridker P.M., Rifai N., Pfeffer M.A., Sacks F.M., Moye L.A., Goldman S., Flaker G.C., Braunwald E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1998; 98 (9): 839–844. doi: 10.1161/01.cir.98.9.839.
  50. Ridker P.M., Rifai N., Pfeffer M.A., Sacks F., Braunwald E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999; 100 (3): 230–235. doi: 10.1161/01.cir.100.3.230.
  51. Ridker P.M., Rifai N., Lowenthal S.P. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation. 2001; 103 (9): 1191–1193. doi: 10.1161/01.cir.103.9.1191.
  52. Albert M.A., Danielson E., Rifai N., Ridker P.M.; PRINCE Investigators. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP eva­luation (PRINCE): a randomized trial and cohort study. JAMA. 2001; 286 (1): 64–70. doi: 10.1001/jama.286.1.64.
  53. Jialal I., Stein D., Balis D., Grundy S.M., ­Adams-Huet B., Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001; 103 (15): 1933–1935. doi: 10.1161/01.cir.103.15.1933.
  54. Balk E.M., Lau J., Goudas L.C., Jordan H.S., Kupelnick B., Kim L.U., Karas R.H. Effects of statins on nonli­pid serum markers associated with cardiovascular disease: a systematic review. Ann. Intern. Med. 2003; 139 (8): 670–682. doi: 10.7326/0003-4819-139-8-200310210-00011.
  55. Plenge J.K., Hernandez T.L., Weil K.M., Poirier P., Grunwald G.K., Marcovina S.M., Eckel R.H. Simvastatin lowers C-reactive protein within 14 days: an effect independent of low-density lipoprotein cholesterol reduction. Circulation. 2002; 106 (12): 1447–1452. doi: 10.1161/01.cir.0000029743.68247.31.
  56. Lourenço P., Pereira J., Ribeiro A., Ferreira-Coimbra J., Barroso I., Guimarães J.T., Leite-Moreira A., Bettencourt P. C-reactive protein decrease associates with morta­lity reduction only in heart failure with preserved ejection fraction. J. Cardiovasc. Med. (Hagerstown). 2019; 20 (1): 23–29. doi: 10.2459/JCM.0000000000000726.
  57. Hedayat M., Mahmoudi M.J., Rose N.R., Rezaei N. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail. Rev. 2010; 15 (6): 543–62. doi: 10.1007/s10741-010-9168-4.
  58. Yndestad A., Damås J.K., Oie E., Ueland T., Gullestad L., Aukrust P. Systemic inflammation in heart fai­lure — the whys and wherefores. Heart Fail. Rev. 2006; 11 (1): 83–92. doi: 10.1007/s10741-006-9196-2.
  59. Prasad K. C-reactive protein (CRP)-lowering agents. Cardiovasc. Drug Rev. 2006; 24 (1): 33–50. doi: 10.1111/j.1527-3466.2006.00033.x.

© 2021 Khazova E.V., Bulashova O.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies