Coronavirus infection and gut microbiota
- Authors: Safina DD1, Abdulkhakov SR1,2
-
Affiliations:
- Kazan Federal University
- Kazan State Medical University
- Issue: Vol 102, No 4 (2021)
- Pages: 518-527
- Section: Reviews
- URL: https://journals.rcsi.science/kazanmedj/article/view/52678
- DOI: https://doi.org/10.17816/KMJ2021-518
- ID: 52678
Cite item
Abstract
At present time, a number of questions regarding the pathophysiological characteristics and therapeutic approa¬ches to the treatment of the new coronavirus infection COVID-19 remain unresolved. In some cases, patients with COVID-19 may experience symptoms of gastrointestinal tract disorder. According to the literature, the new SARS-CoV-2 coronavirus can replicate in the gastrointestinal tract and may affect the gut microbiota. The article aims to review studies about the possible relationship between the gut microbiota condition and the course of COVID-19 infection, as well as to consider the gut microbiota as a potential therapeutic target and probiotic drugs as possible therapeutic agents in the treatment of viral infections, including COVID-19 infection. It is known that gut microbiota condition is one of the factors determining the susceptibility and features of the body’s response to various infectious agents, possibly including the COVID-19 infection. Currently published studies demonstrate a possible relationship between the gut microbiota condition and the course of COVID-19 infection, however, to confirm this hypothesis, additional studies are required, which will allow to make more unambiguous conclusions with subsequent development of new approaches to the prevention and treatment of infection. Potentially a lot of hope in this direction is inspired by the results of probiotics studies, which showed that their use may reduce the frequency and severity of viral infections of the upper respiratory tract. However, currently, there is insufficient data to extrapolate the results of these studies to COVID-19 patients.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
D D Safina
Kazan Federal University
Author for correspondence.
Email: dilyara-sd@yandex.ru
Russian Federation, Kazan, Russia
S R Abdulkhakov
Kazan Federal University; Kazan State Medical University
Email: dilyara-sd@yandex.ru
Russian Federation, Kazan, Russia; Kazan, Russia
References
- Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Версия 11 (07.05.2021). Ministry of Health of the Russian Federation. https://xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc/872/attach/Bmr_COVID-19_compressed.pdf (access date: 30.05.2021) (In Russ.)
- Decree of the Government of the Russian Federation No. 66, issued at 31.01.2020 “On amending the list of diseases that pose a danger to others” with supplementation of Russian Ministry of Health from 2 February 2020. http://government.ru/dep_news/38904/ (access date: 17.06.2020). (In Russ.)
- Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA. 2020; 323 (18): 1824–1836. doi: 10.1001/jama.2020.6019.
- Cole-Jeffrey C.T., Liu M., Katovich M.J., Raizada M.K., Shenoy V. ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. J. Cardiovasc. Pharmacol. 2015; 66 (6): 540–550. doi: 10.1097/FJC.0000000000000307.
- Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020; 581 (7807): 221–224. doi: 10.1038/s41586-020-2179-y.
- Wang J., Zhao S., Liu M., Zhao Z., Xu Y., Wang P., Lin M., Xu Y., Huang B., Zuo X., Chen Z., Bai F., Cui J., Lew A.M., Zhao J., Zhang Y., Luo H., Zhang Y. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism. MedRxiv. 2020. doi: 10.1101/2020.02.05.20020545.
- Zhang H., Kang Z., Gong H., Xu D., Wang J., Li Z., Cui Х., Xiao J., Meng T., Zhou W., Liu J. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020. doi: 10.1101/2020.01.30.927806.
- Mohan S.V., Hemalatha M., Kopperi H., Ranjith I., Kumar A.K. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem. Eng. J. 2021; 405: 126 893. doi: 10.1016/j.cej.2020.126893.
- Kitajima M., Ahmed W., Bibby K., Carducci A., Gerba C.P., Hamilton K.A., Haramoto E., Rose J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020; 739: 139076. doi: 10.1016/j.scitotenv.2020.139076.
- Chan K.H., Poon L.L., Cheng V.C.C., Guan Y., Hung I.F.N., Kong J., Yam L.Y.C., Seto W.H., Yuen K.Y., Peiris J.S.M. Detection of SARS coronavirus in patients with suspected SARS. Emerg. Infect. Dis. 2004; 10 (2): 294–299. doi: 10.3201/eid1002.030610.
- Zheng S., Fan J., Yu F., Feng B., Lou B., Zou Q., Xie G., Lin S., Wang R., Yang X., Chen W., Wang Q., Zhang D., Liu Y., Gong R., Ma Z., Lu S., Xiao Y., Gu Y., Zhang J., Yao H., Xu K., Lu X., Wei G., Zhou J., Fang Q., Cai H., Qiu Y., Sheng J., Chen Y., Liang T. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ, 2020; 369: m1443. doi: 10.1136/bmj.m1443.
- Vespa E., Pugliese N., Colapietro F., Aghemo A. Stay (GI) healthy: COVID-19 and gastrointestinal manifestations. Tech Innov. Gastrointest. Endosc. 2021; 23 (2): 179–189. doi: 10.1016/j.tige.2021.01.006.
- Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., Kuang L., Fang X., Mishra N., Lu J., Shan H., Jiang G., Huang X. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020; 5 (5): 434–435. doi: 10.1016/S2468-1253(20)30083-2.
- Gu J., Han B., Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020; 158 (6): 1518–1519. doi: 10.1053/j.gastro.2020.02.054.
- Woelfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Mueller M.A., Niemeyer D., Vollmar P., Rothe C., Hoelscher M., Bleicker T., Brünink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster. MedRxiv. 2020. doi: 10.1101/2020.03.05.20030502.
- Zuo T., Liu Q., Zhang F., Lui G.C., Tso E.Y., Yeoh Y.K., Chen Z., Boon S.S., Chan F.K., Chan P.K., Ng S.C. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021; 70 (2): 276–284. doi: 10.1136/gutjnl-2020-322294.
- Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A., Cheung C.P., Chen N., Lai C.K.C., Chen Z., Tso E.Y.K., Fung K.S.C., Chan V., Ling L., Joynt G., Hui D.S.C., Chan F.K.L., Chan P.K.C., Ng S.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020; 159 (3): 944–955. doi: 10.1053/j.gastro.2020.05.048.
- Gu S., Chen Y., Wu Z., Chen Y., Gao H., Lv L., Guo F., Zhang X., Luo R., Huang C., Lu H., Zheng B., Zhang J., Yan R., Zhang H., Jiang H., Xu Q., Guo J., Gong Y., Tang L., Li L. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin. Infect. Dis. 2020; 71 (10): 2669–2678. doi: 10.1093/cid/ciaa709.
- Allali I., Bakri Y., Amzazi S., Ghazal H. Gut-lung axis in COVID-19. Interdiscip. Perspect. Infect. Dis. 2021; 2021: 6655380. doi: 10.1155/2021/6655380.
- Effenberger M., Grabherr F., Mayr L., Schwaerzler J., Nairz M., Seifert M., Hilbe R., Seiwald S., Scholl-Buergi S., Fritsche G., Bellmann-Weiler R., Weiss G., Müller T., Adolph T.E., Tilg H. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020; 69: 1543–1544. doi: 10.1136/gutjnl-2020-321388.
- Bulatova E.M., Bogdanova N.M., Lobanova E.A, Gabruskaya T.V. Intestinal microbiota: modern concepts. Pediatriya. Zhurnal im. G.N. Speranskogo. 2009; 87 (3): 104–109. (In Russ.)
- Negi S., Das D.K., Pahari S., Nadeem S., Agrewala J.N. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol. 2019; 10: 2441. doi: 10.3389/fimmu.2019.02441.
- Dhar D., Mohanty A. Gut microbiota and COVID-19-possible link and implications. Virus Res. 2020; 285: 198018. doi: 10.1016/j.virusres.2020.198018.
- Durack J., Lynch S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019; 216 (1): 20–40. doi: 10.1053/j.gastro.2020.02.054.
- Dumas A., Bernard L., Poquet Y., Lugo-Villarino G., Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018; 20 (12): e12966. doi: 10.1111/cmi.12966.
- Groves H.T., Higham S.L., Moffatt M.F., Cox M.J., Tregoning J.S. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio. 2020; 11 (1): e03236-19. doi: 10.1128/mBio.03236-19.
- Gill H.S., Rutherfurd K.J., Cross M.L., Gopal P.K. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am. J. Clin. Nutr. 2001; 74 (6): 833–839. doi: 10.1093/ajcn/74.6.833.
- Nagpal R., Mainali R., Ahmadi S., Wang S., Singh R., Kavanagh K., Kitzman D.W., Kushugulova A., Marotta F., Yadav H. Gut microbiome and aging: Physiological and mechanistic insights. Nutr. Healthy Aging. 2018; 4 (4): 267–285. doi: 10.3233/NHA-170030.
- Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell Infect. Microbiol. 2018; 8: 13. doi: 10.3389/fcimb.2018.00013.
- Verdu E.F., Hayes C.L., O’Mahony S.M. The gut-brain axis: Dietary, probiotic, and prebiotic interventions on the microbiota. Importance of the microbiota in early life and influence on future health. Academic Press. 2016; 159–184. doi: 10.1016/C2014-0-02907-3.
- Miquel S., Martin R., Rossi O., Bermúdez-Humarán L.G., Chatel J.M., Sokol H., Thomas M., Wells J.M., Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013; 16 (3): 255–261. doi: 10.1016/j.mib.2013.06.003.
- Kaakoush N.O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell Infect. Microbiol. 2015; 5: 84. doi: 10.3389/fcimb.2015.00084.
- Yeoh Y.K., Zuo T., Lui G.C., Zhang F., Liu Q., Li A.Y., Chung A.C., Cheung C.P., Tso E.Y., Fung K.S., Chan V., Ling L., Joynt G., Hui D.S., Chow K.M., Ng S.S.S., Li T.C., Ng R.W., Yip T.C., Wong G.L., Chan F.K., Wong C.K., Chan P.K., Ng S.C. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70 (4): 698–706. doi: 10.1136/gutjnl-2020-323020.
- Ramanan P., Barreto J.N., Osmon D.R., Tosh P.K. Rothia bacteremia: a 10-year experience at Mayo Clinic, Rochester, Minnesota. J. Clin. Microbiol. 2014; 52 (9): 3184–3189. doi: 10.1128/JCM.01270-14.
- Lu H.F., Li A., Zhang T., Ren Z., He K., Zhang H., Yang J., Luo Q., Zhou K., Chen C., Chen X., Wu Z., Li L. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection. Emerg. Microbes Infect. 2017; 6 (1): e112. doi: 10.1038/emi.2017.101.
- Khaneghah A.M., Abhari K., Eş I., Soares M.B., Oliveira R.B.A., Hosseini H., Rezaei M., Balthazar C.F., Silva R., Cruz A.G., Ranadheera C.S., Sant’Ana A.S. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends in Food Science & Technology. 2020; 95: 205–218. doi: 10.1016/j.tifs.2019.11.022.
- Akour A. Probiotics and COVID‐19: is there any link? Letters in Applied Microbiology. 2020; 7 (3): 229–234. doi: 10.1111/lam.13334.
- Di Renzo L., Merra G., Esposito E., De Lorenzo A. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19? Eur. Rev. Med. Pharmacol. Sci. 2020; 24 (8): 4062–4063. doi: 10.26355/eurrev_202004_20977.
- Mak J.W.Y., Chan F.K.L., Ng S.C. Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol. Hepatol. 2020; 5 (7): 644–645. doi: 10.1016/S2468-1253(20)30122-9.
- Wang Y., Li X., Ge T., Xiao Y., Liao Y., Cui Y., Zhang Y., Ho W., Yu G., Zhang T. Probiotics for prevention and treatment of respiratory tract infections in children: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016; 95 (31): e4509. doi: 10.1097/MD.0000000000004509.
- Kanauchi O., Andoh A., AbuBakar S., Yamamoto N. Probiotics and paraprobiotics in viral infection: clinical application and effects on the innate and acquired immune systems. Curr. Pharm. Des. 2018; 24 (6): 710–717. doi: 10.2174/1381612824666180116163411.
- Eguchi K., Fujitani N., Nakagawa H., Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci. Rep. 2019; 9 (1): 4812. doi: 10.1038/s41598-019-39602-7.
- Luoto R., Ruuskanen O., Waris M., Kalliomäki M., Salminen S., Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2014; 133 (2): 405–413. doi: 10.1016/j.jaci.2013.08.020.
- Ayyanna R., Ankaiah D., Arul V. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front. Microbiol. 2018; 9: 3063. doi: 10.3389/fmicb.2018.03063.
- Groeger D., O'Mahony L., Murphy E.F., Bourke J.F., Dinan T.G., Kiely B., Shanahan F., Quigley E.M.M. Bifidobacterium infantis 35,624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013; 4 (4): 325–339. doi: 10.4161/gmic.25487.
- Morshedi M., Hashemi R., Moazzen S., Sahebkar A., Hosseinifard E.-S. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review. J. Neuroinflammation. 2019; 16: 231. doi: 10.1186/s12974-019-1611-4.
- Morrow L.E., Kollef M.H., Casale T.B. Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2010; 182 (8): 1058–1064. doi: 10.1164/rccm.200912-1853OC.
- Zeng J., Wang C.T., Zhang F.S., Qi F., Wang S.F., Ma S., Wu T.J., Tian H., Tian Z.T., Zhang S.L., Qu Y., Liu L.Y., Li Y.Z., Cui S., Zhao H.L., Du Q.S., Ma Z., Li C.H., Li Y., Si M., Chu Y.F., Meng M., Ren H.S., Zhang J.C., Jiang J.J., Ding M., Wang Y.P. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: a randomized controlled multicenter trial. Intensive Care Med. 2016; 42 (6): 1018–1028. doi: 10.1007/s00134-016-4303-x.
- Feng Z., Wang Y., Qi W. The small intestine, an underestimated site of SARS-CoV-2 infection: from red queen effect to probiotics. Preprints. 2020. doi: 10.20944/preprints202003.0161.v1.
- Baud D., Agri V.D., Gibson G.R., Reid G., Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. Public Health. 2020; 8: 186. doi: 10.3389/fpubh.2020.00186.
Supplementary files
