The role of the placenta in the formation of gestational complications in women with metabolic syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Over the past decade, the prevalence of metabolic syndrome has increased significantly worldwide, and in most countries around the world this non-communicable disease has become a major health threat. Today, the mechanisms of metabolic syndrome influence on the development of various pregnancy complications are actively discussed. Studies of the pathophysiological mechanisms of the relationship between metabolic disorders and placental-associated pregnancy complications deserve special attention. The placenta performs essential functions throughout pregnancy and serves as a site for nutrient exchange and gas exchange between the pregnant woman and the fetus. Metabolic changes in women are closely associated with a number of placentally mediated obstetric complications, including preeclampsia, placental insufficiency, macrosomia, fetal growth restriction and antenatal fetal death. It is believed that it is in the first trimester of pregnancy that trophoblast cells are most sensitive to metabolic changes in homeostasis, which leads to their ischemia, impaired proliferation, invasion and angiogenesis. In pregnancies complicated by metabolic syndrome, the placenta is exposed to inflammation, oxidative stress, dyslipidemia, hyperglycemia, and altered hormone levels. Such metabolic changes can affect the development and function of the placenta, leading to abnormal fetal growth, as well as metabolic and cardiovascular disorders in children in the long term. Despite the wide range of pregnancy complications with metabolic syndrome, the mechanisms of their development have not been sufficiently studied. The purpose of this review was to summarize current knowledge about the pathophysiological mechanisms of the influence of metabolic syndrome on the development and function of the placenta.

About the authors

Agamurad A. Orazmuradov

Peoples' Friendship University of Russia

Email: orazmurzdov_aa@rudn.university
ORCID iD: 0000-0003-0145-6934
SPIN-code: 3240-2959

MD, Dr. Sci. (Med.), Prof., Depart. of Obstetrics and Gynecology with a Course of Perinatology, Medical Institute

Russian Federation, Moscow

Ekaterina V. Mukovnikova

Peoples' Friendship University of Russia

Author for correspondence.
Email: mukovnikova1997@gmail.com
ORCID iD: 0000-0001-9646-0156
SPIN-code: 3246-7372

P.G. (Med.), Depart. of Obstetrics and Gynecology with a Course of Perinatology, Medical Institute

Russian Federation, Moscow

Irina V. Bekbaeva

Peoples' Friendship University of Russia

Email: iridescentgirl@yandex.ru
ORCID iD: 0000-0002-8679-4061
SPIN-code: 4486-1063

MD, Cand. Sci. (Med.), Assistant, Depart. of Obstetrics and Gynecology with a Course of Perinatology, Medical Institute

Russian Federation, Moscow

Aylar A. Orazmuradova

Peoples' Friendship University of Russia

Email: leily_oraz@mail.ru
ORCID iD: 0000-0001-5637-419X
SPIN-code: 3458-1392

Resident, Depart. of Obstetrics and Gynecology with a Course of Perinatology, Medical Institute

Russian Federation, Moscow

Zhasmin Zh. Suleymanova

Peoples' Friendship University of Russia

Email: 1042210350@pfur.ru
ORCID iD: 0000-0003-1232-5753
SPIN-code: 1393-7291

P.G., (Med.), Depart. of Obstetrics and Gynecology with a Course of Perinatology, Medical Institute

Russian Federation, Moscow

References

  1. Berezhanskaya SB, Lebedenko AA, Afonin AA, Panova IV, Luk¬yanova EA, Abduragimova MH, Dombayan SH. The role of placental abnormalities in development of perinatal brain damage in the foetus and the newborn (a literature review). Siberian Medical Review. 2022;(6):138. (In Russ.) doi: 10.20333/25000136-2022-6-13-23
  2. Lipatov IS, Tezikov YV, Azamatov AR, Shmakov RG. Identity of preeclampsia and metabolic syndrome clinical manifestations: searching for substantiation. Obstetrics and Gynegology (Moscow). 2021;3:81–89. (In Russ.) doi: 10.18565/aig.2021.3.81-89
  3. Arakelyan GA, Orazmuradov AA, Mayatskaya TA, Bekbaeva IV, Kotaysh GA. THE Condition of newborns from mothers with gestatio¬nal diabetes mellitus and pregestational obesity. Obstetrics and gynecology: news, opinions, training. 2020;8(S3):24–29. (In Russ.) doi: 10.24411/2303-9698-2020-13904
  4. Ozhirenie. Diabet. Beremennost'. Versii i kontraversii. Klinicheskie praktiki. Perspektivy. (Obesity. Diabetes. Pregnancy. Versions and contraversions. Clinical practic¬es. Perspectives.) VE Radzinskii, TL Botasheva, GA Kotaysh, editors. Moscow: GEOTAR-Media; 2020. p. 28–30. (In Russ.)
  5. Bicocca MJ, Mendez-Figueroa H, Chauhan SP, Sibai BM. Maternal obesity and the risk of early-onset and late-onset hypertensive disorders of pregnancy. Obstet Gynecol. 2020;136(1):118–127. doi: 10.1097/AOG.0000000000003901
  6. Lipatov IS, Tezikov YuV, Shmakov RG, Azamatov AR, Martynova NV. Pregnancy is a natural model of metabolic syndrome: results of a dynamic study of physiological gestation. Obstetrics and Gynegology (Moscow). 2020;(9):88–96. (In Russ.) doi: 10.18565/aig.2020.9.88-96
  7. Kuzina IA, Goncharova EV, Martirosian NS, Telnova ME, Atamanova YA, Yudina KA, Petunina NA. Hemostasis in women with obesity and metabolic syndrome. RMJ. Medical review. 2021;5(9):598–604. (In Russ.) doi: 10.32364/2587-6821-2021-5-9-598-604
  8. Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601(7):1287–1306. doi: 10.1113/JP284139
  9. Huhtala MS, Tertti K, Juhila J, Sorsa T, Rönnemaa T. Metformin and insulin treatment of gestational diabetes: Effects on inflammatory markers and IGF-binding protein-1 — secondary analysis of a randomized controlled trial. BMC Pregnancy Childbirth. 2020;20(1):401. doi: 10.1186/s12884-020-03077-6
  10. Li M, Huang Y, Xi H, Zhang W, Xiang Z, Wang L, Li X, Guo H. Circ_FOXP1 promotes the growth and survival of high glucose-treated human trophoblast cells through the regulation of miR-508-3p/SMAD family member 2 pathway. Endocr J. 2022;69(9):1067–1078. doi: 10.1507/endocrj.EJ21-0528
  11. Zhou X, Xiang C, Zheng X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability. Diagn Pathol. 2019;14(1):119. doi: 10.1186/s13000-019-0899-9
  12. Peng HY, Li MQ, Li HP. MiR-137 restricts the viability and migration of HTR-8/SVneo cells by downregulating FNDC5 in gestational dia¬betes mellitus. Curr Mol Med. 2019;19(7):494–505. doi: 10.2174/1566524019666190520100422
  13. Zhang C, Wang L, Chen J, Song F, Guo Y. Differential expression of miR-136 in gestational diabetes mellitus mediates the high-glucose-induced trophoblast cell injury through targeting E2F1. Int J Geno¬mics. 2020;20:3645371. doi: 10.1155/2020/3645371
  14. Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered. 2022;13(1):319–330. doi: 10.1080/21655979.2021.2001219
  15. Zhang C, Zhao D. MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase. Bioengineered. 2021;12(1):2410–2419. doi: 10.1080/21655979.2021.1933678
  16. Shou C, Wei YM, Wang C, Yang HX. Updates in long-term maternal and fetal adverse effects of gestational diabetes mellitus. Maternal-Fetal Medicine. 2020;1(2):91–94. doi: 10.1097/FM9.0000000000000019
  17. Chakraborty C, Gleeson LM, McKinnon T, Lala PK. Regulation of human trophoblast migration and invasiveness. Can J Physiol Pharmacol. 2002;80(2):116–124. doi: 10.1139/y02-016
  18. Belkacemi L, Lash GE, Macdonald-Goodfellow SK, Caldwell JD, Graham CH. Inhibition of human trophoblast invasiveness by high glucose concentrations. J Clin Endocrinol Metab. 2005;90(8):4846–4851. doi: 10.1210/jc.2004-2242
  19. Lai R, Ji L, Zhang X, Xu Y, Zhong Y, Chen L, Hu H, Wang L. Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions. Mol Cell Endocrinol. 2022;547:111598. doi: 10.1016/j.mce.2022.111598
  20. Zhang J, Bai WP. C1q/tumor necrosis factor related protein 6 (CTRP6) regulates the phenotypes of high glucose-induced gestational trophoblast cells via peroxisome proliferator-activated receptor gamma (PPARγ) signaling. Bioengineered. 2022;13(1):206–216. doi: 10.1080/21655979.2021.2012906
  21. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int J Mol Sci. 2021;22(18):9675. doi: 10.3390/ijms22189675
  22. James JL, Boss AL, Sun C, Allerkamp HH, Clark AR. From stem cells to spiral arteries: A journey through early placental development. Placenta. 2022;125:68–77. doi: 10.1016/j.placenta.2021.11.004
  23. Nteeba J, Varberg KM, Scott RL, Simon ME, Iqbal K, Soares MJ. Poorly controlled diabetes mellitus alters placental structure, efficiency, and plasticity. BMJ Open Diabetes Res Care. 2020;8(1):e001243. doi: 10.1136/bmjdrc-2020-001243
  24. Liu H, Ning F, Lash GE. Contribution of vascular smooth muscle cell apoptosis to spiral artery remodeling in early human pregnancy. Placenta. 2022;120:10–17. doi: 10.1016/j.placenta.2022.02.005
  25. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. doi: 10.3390/cells8050471
  26. Kemp SS, Lin PK, Sun Z, Castano MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol. 2022;10:943533. doi: 10.3389/fcell.2022.943533
  27. Stepan H, Galindo A, Hund M, Schlembach D, Sillman J, Surbek D, Vatish M. Clinical utility of sFlt-1 and PlGF in screening, prediction, dia¬gnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet Gynecol. 2023;61(2):168–180. doi: 10.1002/uog.26032
  28. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(14):1690–1702. doi: 10.1016/j.jacc.2020.08.014
  29. Tao J, Xia LZ, Chen JJ, Zeng JF, Meng J, Wu S, Wang Z. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression. J Obstet Gynaecol Res. 2020;46(9):1690–1701. doi: 10.1111/jog.14341
  30. Anness AR, Baldo A, Webb DR, Khalil A, Robinson TG, Mousa HA. Effect of metformin on biomarkers of placental-mediated disease: A systematic review and meta-analysis. Placenta. 2021;107:51–58. doi: 10.1016/j.placenta.2021.02.021
  31. Al-Ofi E, Alrafiah A, Maidi S, Almaghrabi S, Hakami N. Altered expression of angiogenic biomarkers in pregnancy associated with gestational diabetes. Int J Gen Med. 2021;14:3367–3375. doi: 10.2147/IJGM.S316670
  32. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140. doi: 10.3390/ijms20246140
  33. Alqudah A, Eastwood KA, Jerotic D, Todd N, Hoch D, McNally R, Obradovic D, Dugalic S, Hunter AJ, Holmes VA, McCance DR, Young IS, Watson CJ, Robson T, Desoye G, Grieve DJ, McClements L. FKBPL and SIRT-1 are downregulated by diabetes in pregnancy impacting on angiogenesis and endothelial function. Front Endocrinol (Lausanne). 2021;12:650328. doi: 10.3389/fendo.2021.650328
  34. Weiß E, Berger HM, Brandl WT, Strutz J, Hirschmugl B, Simovic V, Tam-Ammersdorfer C, Cvitic S, Hiden U. Maternal overweight downregulates MME (Neprilysin) in feto-placental endothelial cells and in cord blood. Int J Mol Sci. 2020;21(3):834. doi: 10.3390/ijms21030834
  35. Hiden U, Lassance L, Tabrizi NG, Miedl H, Tam-Amersdorfer C, Cetin I, Lang U, Desoye G. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium. J Clin Endocrinol Metab. 2012;97(10):3613–3621. doi: 10.1210/jc.2012-1212
  36. Keenan-Devlin L, Miller GE, Ernst LM, Freedman A, Smart B, Britt JL, Singh L, Crockett AH, Borders A. Inflammatory markers in serum and placenta in a randomized controlled trial of group prenatal care. Am J Obstet Gynecol MFM. 2023;5(12):101200. doi: 10.1016/j.ajogmf.2023.101200
  37. Li YX, Long DL, Liu J, Qiu D, Wang J, Cheng X, Yang X, Li RM, Wang G. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta. Medicine (Baltimore). 2020;99(40):e22152. doi: 10.1097/MD.0000000000022152
  38. Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: From foe to friend in reproduction. Hum Reprod Update. 2021;27(4):720–746. doi: 10.1093/humupd/dmaa062
  39. St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal obesity and the uterine immune cell landscape: The shaping role of inflammation. Int J Mol Sci. 2020;21(11):3776. doi: 10.3390/ijms21113776
  40. Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: Current status and future perspectives. Front Immunol. 2021;12:758281. doi: 10.3389/fimmu.2021.758281
  41. McElwain CJ, McCarthy FP, McCarthy CM. Gestational diabetes mellitus and maternal immune dysregulation: What we know so far. Int J Mol Sci. 2021;22(8):4261. doi: 10.3390/ijms22084261
  42. Monaco-Brown M, Lawrence DA. Obesity and maternal-placental-fetal immunology and health. Front Pediatr. 2022;10:859885. doi: 10.3389/fped.2022.859885
  43. Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol. 2022;12:940937. doi: 10.3389/fcimb.2022.940937
  44. Kubler JM, Clifton VL, Moholdt T, Beetham KS. The effects of ¬exercise during pregnancy on placental composition: A systematic review and meta-analysis. Placenta. 2022;117:39–46. doi: 10.1016/j.placenta.2021.10.008
  45. Harvey L, van Elburg R, van der Beek EM. Macrosomia and large for gestational age in Asia: One size does not fit all. J Obstet Gynaecol Res. 2021;47(6):1929–1945. doi: 10.1111/jog.14787
  46. Kelly AC, Powell TL, Jansson T. Placental function in maternal obesity. Clin Sci (Lond). 2020;134(8):961–984. doi: 10.1042/CS20190266
  47. Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregra¬vid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol. 2019;106(5):1035–1050. doi: 10.1002/JLB.3RI0619-181R
  48. Daskalakis G, Marinopoulos S, Krielesi V, Papapanagiotou A, Papantoniou N, Mesogitis S, Antsaklis A. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87(4):403–407. doi: 10.1080/00016340801908783
  49. Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrup¬ters. Front Endocrinol (Lausanne). 2023;14:1215353. doi: 10.3389/fendo.2023.1215353
  50. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of maternal insulin resistance during pregnancy: An updated overview. J Diabetes Res. 2019;2019:5320156. doi: 10.1155/2019/5320156
  51. Sibiak R, Jankowski M, Gutaj P, Mozdziak P, Kempisty B, Wender-Ożegowska E. Placental lactogen as a marker of maternal obesity, dia¬betes, and fetal growth abnormalities: Current knowledge and cli¬nical perspectives. J Clin Med. 2020;9(4):1142. doi: 10.3390/jcm9041142
  52. Fleenor D, Oden J, Kelly PA, Mohan S, Alliouachene S, Pende M, Wentz S, Kerr J, Freemark M. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: Studies of a no¬vel mouse model combining lactogen resistance and growth hormone deficiency. Endocrinology. 2005;146(1):103–112. doi: 10.1210/en.2004-0744
  53. Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–49. doi: 10.1016/j.ijdevneu.2019.01.003
  54. Easton ZJW, Regnault TRH. The impact of maternal body composition and dietary fat consumption upon placental lipid processing and offspring metabolic health. Nutrients. 2020;12(10):3031. doi: 10.3390/nu12103031
  55. Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165374. doi: 10.1016/j.bbadis.2018.12.025
  56. Desoye G, Wells JCK. Pregnancies in diabetes and obesity: The capacity-load model of placental adaptation. Diabetes. 2021;70(4):823–830. doi: 10.2337/db20-1111
  57. Dumolt JH, Powell TL, Jansson T. Placental function and the development of fetal overgrowth and fetal growth restriction. Obstet Gynecol Clin North Am. 2021;48(2):247–266. doi: 10.1016/j.ogc.2021.02.001
  58. Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of placental glucose transporters in determining fetal growth. Reprod Sci. 2022;29(10):2744–2759. doi: 10.1007/s43032-021-00699-9
  59. Desoye G, Cervar-Zivkovic M. Diabetes mellitus, obesity, and the placenta. Obstet Gynecol Clin North Am. 2020;47(1):65–79. doi: 10.1016/j.ogc.2019.11.001
  60. Castillo-Castrejon M, Yamaguchi K, Rodel RL, Erickson K, Kra¬mer A, Hirsch NM, Rolloff K, Jansson T, Barbour LA, Powell TL. Effect of type 2 diabetes mellitus on placental expression and activity of nutrient transporters and their association with birth weight and neonatal adiposity. Mol Cell Endocrinol. 2021;532:111319. doi: 10.1016/j.mce.2021.111319
  61. Nogues P, Dos Santos E, Couturier-Tarrade A, Berveiller P, Arnould L, Lamy E, Grassin-Delyle S, Vialard F, Dieudonne MN. Maternal obesity influences placental nutrient transport, inflammatory status, and morphology in human term placenta. J Clin Endocrinol Metab. 2021;106(4):e1880–e1896. doi: 10.1210/clinem/dgaa660

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies