Interleukin-13: association with inflammation and cysteine proteolysis in varicose transformation of the vascular wall

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The present review considers current data on the structure, functions and role of interleukin-13 in the pathogenesis of vascular wall varicose transformation in terms of proteolysis and inflammatory response. It is known that interleukin-13 is able to interact with transforming growth factor-β1 in diseases associated with fibrosis. The latter activates fibroblasts and excessive formation of the extracellular matrix, thereby inducing fibrosis of the vascular wall, which is one of the links in the pathogenesis of varicose veins. Also, to date, there is evidence of the interleukin-13 participation in the induction of certain proteolytic enzymes’ synthesis, such as matrix metalloproteinases. For the latter, participation in the transformation of the venous wall has been proven to date. The remodeling of the venous wall itself can lead to an increase in the expression of proteinases, providing a proteolytic mechanism for changing the structural organization of the venous wall in varicose veins of the lower extremities. At the same time, the involvement of lysosomal cysteine proteinases remains poorly understood. The expression and production of individual cathepsins are regulated by biologically active molecules: interleukin-1, interleukin-6, tumor necrosis factor α, which are directly involved in inflammatory reactions in the wall of varicose veins. In particular, venous pathology develops in a vicious circle of inflammation with the formation of abnormal venous blood flow, chronic venous hypertension and dilation, and the recruitment of leukocytes. This leads to a further, deeper, remodeling of the walls and valves of the veins, an increase in blood pressure and the release of pro-inflammatory mediators — chemokines and cytokines. In connection with the above, in order to understand the mechanisms of proteolysis in the vascular wall in varicose veins of the lower extremities, it is important to have an idea about the possible interactions of interleukin-13 with transforming growth factor-β1, inflammatory cytokines, and cathepsins.

About the authors

Roman E. Kalinin

Ryazan State Medical University named after I.P. Pavlov

Email: kalinin-re@yandex.ru
ORCID iD: 0000-0002-0817-9573

M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Cardiovascular, Endovascular Surgery and Diagnostic Radiology

Russian Federation, Ryazan, Russia

Maria G. Konopleva

Ryazan State Medical University named after I.P. Pavlov

Author for correspondence.
Email: mari.konopleva.97@mail.ru
ORCID iD: 0000-0002-0813-1430

Senior Laboratory Assistant-Researcher, Central Research Laboratory

Russian Federation, Ryazan, Russia

Igor A. Suchkov

Ryazan State Medical University named after I.P. Pavlov

Email: i.suchkov@rzgmu.ru
ORCID iD: 0000-0002-1292-5452

M.D., D. Sci. (Med.), Prof., Depart. of Cardiovascular, Endovascular Surgery and Diagnostic Radiology

Russian Federation, Ryazan, Russia

Natalya V. Korotkova

Ryazan State Medical University named after I.P. Pavlov

Email: fnv8@yandex.ru
ORCID iD: 0000-0001-7974-2450

M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Biological Chemistry with Course of Clinical Laboratory Diagnostics, Continuing Professional Education Faculty, Senior Researcher, Central Research Laboratory

Russian Federation, Ryazan, Russia

Nina D. Mzhavanadze

Ryazan State Medical University named after I.P. Pavlov

Email: nina_mzhavanadze@mail.ru
ORCID iD: 0000-0001-5437-1112

M.D., D. Sci. (Med.), Prof., Depart. of Cardiovascular, Endovascular Surgery and Diagnostic Radiology, Senior Researcher, Central Research Laboratory

Russian Federation, Ryazan, Russia

References

  1. Busse WW, Viswanathan R. What has been learned by cytokine targeting of asthma? J Allergy Clin Immunol. 2022;150(2):235–249. doi: 10.1016/j.jaci.2022.06.010.
  2. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19(4):237–253. doi: 10.1038/s41571-021-00588-9.
  3. Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA, Liu G. Cytokines: From clinical significance to quantification. Adv Sci. 2021;8(15):2004433. doi: 10.1002/advs.202004433.
  4. Burian EA, Sabah L, Karlsmark T, Kirketerp-Møller K, Moffatt CJ, Thyssen JP, Ågren MS. Cytokines and venous leg ulcer healing — a systematic review. Int J Mol Sci. 2022;23(12):6526. doi: 10.3390/ijms23126526.
  5. Kashtalyan OA, Ushakova LYu. Cytokines as universal regulation system. Medical news. 2017;(9):3–7. (In Russ.)
  6. Junttila IS. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol. 2018;9:888. doi: 10.3389/fimmu.2018.00888.
  7. Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev. 2019;45:9–23. doi: 10.1016/j.cytogfr.2018.12.001.
  8. Iwaszko M, Biały S, Bogunia-Kubik K. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells. 2021;10(11):3000. doi: 10.3390/cells10113000.
  9. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701–721. doi: 10.1016/j.jaci.2010.11.050.
  10. Hussein MS, El-Barbary AM, Nada DW, Gaber RA, Elkolaly RM, Aboelhawa MA. Identification of serum interleukin-13 and interleukin-13 receptor subunit expressions: Rheumatoid arthritis-associated interstitial lung disease. Int J Rheum Dis. 2021;24(4):591–598. doi: 10.1111/1756-185X.14084.
  11. Passalacqua G, Mincarini M, Colombo D, Troisi G, Ferrari M, Bagnasco D, Balbi F, Riccio A, Canonica GW. IL-13 and idiopathic pulmonary fibrosis: Possible links and new therapeutic strategies. Pulm Pharmacol Ther. 2017;45:95–100. doi: 10.1016/j.pupt.2017.05.007.
  12. Seyfizadeh N, Seyfizadeh N, Gharibi T, Babaloo Z. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol Immunol Hung. 2015;62(4):341–378. doi: 10.1556/030.62.2015.4.2.
  13. Bajbouj K, Hachim MY, Ramakrishnan RK, Fazel H, Mustafa J, Alzaghari S, Eladl M, Shafarin J, Olivenstein R, Hamid Q. IL-13 augments histone demethylase JMJD2B/KDM4B expression levels, activity, and nuclear translocation in airway fibroblasts in asthma. J Immunol Res. 2021;2021:6629844. doi: 10.1155/2021/6629844.
  14. Ranasinghe C, Trivedi S, Wijesundara DK, Jackson RJ. IL-4 and IL-13 receptors: Roles in immunity and powerful vaccine adjuvants. Cytokine Growth Factor Rev. 2014;25(4):437–442. doi: 10.1016/j.cytogfr.2014.07.010.
  15. Qian N, Gao Y, Wang J, Wang Y. Emerging role of interleukin-13 in cardiovascular diseases: A ray of hope. J Cell Mol Med. 2021;25(12):5351–5357. doi: 10.1111/jcmm.16566.
  16. Amit U, Kain D, Wagner A, Sahu A, Nevo-Caspi Y, Gonen N, Molotski N, Konfino T, Landa N, Naftali-Shani N, Blum G, Merquiol E, Karo-Atar D, Kanfi Y, Paret G, Munitz A, Cohen HY, Ruppin E, Hannenhalli S, Leor J. New role for interleukin-13 receptor α1 in myocardial homeostasis and heart failure. J Am Heart Assoc. 2017;6(5):005108. doi: 10.1161/JAHA.116.005108.
  17. O'Reilly S. Role of interleukin-13 in fibrosis, particularly systemic sclerosis. Biofactors. 2013;39(6):593–596. doi: 10.1002/biof.1117.
  18. Wang L, Tang Z, Huang J. Interleukin-13 contributes to the occurrence of oral submucosal fibrosis. J Cell Mol Med. 2023;27(13):1797–1805. doi: 10.1111/jcmm.17761.
  19. Ramalingam TR, Gieseck RL, Acciani TH, Hart K, Cheever AW, Mentink-Kane MM, Vannella KM, Wynn TA. Enhanced protection from fibrosis and inflammation in the combined absence of IL-13 and IFN-γ. J Pathol. 2016;239(3):344–354. doi: 10.1002/path.4733.
  20. Fichtner-Feigl S, Fuss IJ, Young CA, Watanabe T, Geissler EK, Schlitt HJ, Kitani A, Strober W. Induction of IL-13 triggers TGF-beta1-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis. J Immunol. 2007;178(9):5859–5870. doi: 10.4049/jimmunol.178.9.5859.
  21. Lee CG, Kang HR, Homer RJ, Chupp G, Elias JA. Transgenic modeling of transforming growth factor-beta (1): Role of apoptosis in fibrosis and alveolar remodeling. Proc Am Thorac Soc. 2006;3(5):418–423. doi: 10.1513/pats.200602-017AW.
  22. Serralheiro P, Soares A, Costa Almeida CM, Verde I. TGF-β1 in vascular wall pathology: Unraveling chronic venous insufficiency pathophysiology. Int J Mol Sci. 2017;18(12):2534. doi: 10.3390/ijms18122534.
  23. Golovina VI, Seliverstov EI, Efremova OI, Zolotukhin IA. Cytokines in pathogenesis of varicose veins. Flebologiya. 2021;15(2):117–126. (In Russ.) doi: 10.17116/flebo202115021117.
  24. Ligi D, Croce L, Mosti G, Raffetto JD, Mannello F. Chronic venous insufficiency: Transforming growth factor-β isoforms and soluble endoglin concentration in different states of wound healing. Int J Mol Sci. 2017;18(10):2206. doi: 10.3390/ijms18102206.
  25. Kowalewski R, Malkowski A, Sobolewski K, Gacko M. Evaluation of transforming growth factor-beta signaling pathway in the wall of normal and varicose veins. Pathobiology. 2010;77(1):1–6. doi: 10.1159/000272948.
  26. Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2019;65:2–15. doi: 10.1016/j.mam.2018.06.003.
  27. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325–338. doi: 10.1038/nrneph.2016.48.
  28. Ortega MA, Fraile-Martínez O, García-Montero C, Álvarez-Mon MA, Chaowen C, Ruiz-Grande F, Pekarek L, Monserrat J, Asúnsolo A, García-Honduvilla N, Álvarez-Mon M, Bujan J. Understanding chronic venous disease: A critical overview of its pathophysiology and medical management. J Clin Med. 2021;10(15):3239. doi: 10.3390/jcm10153239.
  29. Kalinin RE, Suchkov IA, Klimentova EA, Shanaev IN, Khashumov RM, Korbut VS. Two rare anatomical variants of femoral triangle vessels in one patient: case report. IP Pavlov Russian Medical Biological Herald. 2023; 31(1):127–136. (In Russ.) doi: 10.17816/PAVLOVJ109525.
  30. Kowalewski R, Malkowski A, Gacko M, Sobolewski K. Influence of thrombophlebitis on TGF-β1 and it’s signaling pathway in the vein wall. Folia Histochem Cytobiol. 2010;48(4):542–548. doi: 10.2478/v10042-010-0041-z.
  31. Hamdan A. Management of varicose veins and venous insufficiency. JAMA. 2012;308(24):2612–2621. doi: 10.1001/jama.2012.111352.
  32. Raetz J, Wilson M, Collins K. Varicose veins: Diagnosis and treatment. Am Fam Physician. 2019;99(11):682–688. PMID: 31150188.
  33. Jacobs BN, Andraska EA, Obi AT, Wakefield TW. Pathophysiology of varicose veins. J Vasc Surg Venous Lymphat Disord. 2017;5(3):460–467. doi: 10.1016/j.jvsv.2016.12.014.
  34. Segiet OA, Brzozowa-Zasada M, Piecuch A, Dudek D, Reichman-Warmusz E, Wojnicz R. Biomolecular mechanisms in varicose veins development. Ann Vasc Surg. 2015;29(2):377–384. doi: 10.1016/j.avsg.2014.10.009.
  35. Raffetto JD. Pathophysiology of chronic venous disease and venous ulcers. Surg Clin North Am. 2018;98(2):337–347. doi: 10.1016/j.suc.2017.11.002.
  36. Castro-Ferreira R, Cardoso R, Leite-Moreira A, Mansilha A. The role of endothelial dysfunction and inflammation in chronic venous disease. Ann Vasc Surg. 2018;46:380–393. doi: 10.1016/j.avsg.2017.06.131.
  37. Askerkhanov RP. Problems of etiology and pathogenesis of varicose veins of the lower extremities. Flebologiya. 2010;4(4):45–47. (In Russ.)
  38. Naoum JJ, Hunter GC. Pathogenesis of varicose veins and implications for clinical management. Vascular. 2007;15(5):242–249. doi: 10.2310/6670.2007.00069.
  39. Labropoulos N. How does chronic venous disease progress from the first symptoms to the advanced stages? A review. Adv Ther. 2019;36(1):13–19. doi: 10.1007/s12325-019-0885-3.
  40. Kalinin RE, Suchkov IA, Shanaev IN, Yudin VA. Hemodynamic disorders in varicose vein disease. Nauka molodykh (Eruditio Juvenium). 2021;9(1):68–76. (In Russ.) doi: 10.23888/HMJ20219168-76.
  41. Birdina J, Pilmane M, Ligers A. The morphofunctional changes in the wall of varicose veins. Ann Vasc Surg. 2017;42:274–284. doi: 10.1016/j.avsg.2016.10.064.
  42. Sushkov SA, Myadelets OD, Samsonova IV, Nebylitsin YuS, Sushkova OS, Kugaev MI. Morphological changes in the wall of the posterior tibial veins in varicose veins of the lower extremities. Vestnik of Vitebsk State Medical University. 2006;5(2):73–79. (In Russ.)
  43. Raffetto JD, Khalil RA. Mechanisms of lower extremity vein dysfunction in chronic venous disease and implications in management of varicose veins. Vessel Plus. 2021;5:36. doi: 10.20517/2574-1209.2021.16.
  44. Shevchenko YuL, Stojko YuM, Gudymovich VG, Chernyago TYu. Endothelial glycocalyx in ensuring the function of the cardiovascular system. Bulletin of Pirogov National Medical & Surgical Center. 2020;15(1):107–112. (In Russ.) doi: 10.25881/BPNMSC.2020.60.73.019.
  45. Solá Ldel R, Aceves M, Dueñas AI, González-Fajardo JA, Vaquero C, Crespo MS, García-Rodríguez C. Varicose veins show enhanced chemokine expression. Eur J Vasc Endovasc Surg. 2009;38(5):635–641. doi: 10.1016/j.ejvs.2009.07.021.
  46. Tiwary SK, Kumar A, Mishra SP, Kumar P, Khanna AK. Study of association of varicose veins and inflammation by inflammatory markers. Phlebology. 2020;35(9):679–685. doi: 10.1177/0268355520932410.
  47. Stepanova TV, Ivanov AN, Tereshkina NE, Popyhova EB, Lagutina DD. Markers of endothelial dysfunction: pathogenetic role and diagnostic significance. Russian clinical laboratory diagnostics. 2019;64(1):34–41. (In Russ.) doi: 10.18821/0869-2084-2019-64-1-34-41.
  48. Sachdev U, Vodovotz L, Bitner J, Barclay D, Zamora R, Yin J, Simmons RL, Vodovotz Y. Suppressed networks of inflammatory mediators characterize chronic venous insufficiency. J Vasc Surg Venous Lymphat Disord. 2018;6(3):358–366. doi: 10.1016/j.jvsv.2017.11.009.
  49. Pfisterer L, König G, Hecker M, Korff T. Pathogenesis of varicose veins — lessons from biomechanics. Vasa. 2014;43(2):88–99. doi: 10.1024/0301-1526/a000335.
  50. Studennikova VV, Severgina LO, Korovin IA, Rapoport LM, Krupinov GE, Novikov IA. Ultrastructural characteristics of the me-chanisms of varicose transformation of veins of different localization. Arkhiv patologii. 2020;82(6):16–23. (In Russ.) doi: 10.17116/patol20208206116.
  51. Shvalb PG, Ukhov YuI. Patologiya venoznogo vozvrata iz nizhnikh konechnostey. (Abnormal venous return from the lower extremities.) Ryazan: Poligraficheskiy kompleks “Tigel”; 2009. 152 p. (In Russ.)
  52. Dhanarak N, Kanchanabat B. Comparative histopathological study of the venous wall of chronic venous insufficiency and varicose disease. Phlebology. 2016;31(9):649–653. doi: 10.1177/0268355515610709.
  53. Kuo CJ, Liang SS, Hsi E, Chiou SH, Lin SD. Quantitative proteomics analysis of varicose veins: Identification of a set of differentially expressed proteins related to ATP generation and utilization. Kaohsiung J Med Sci. 2013;29(11):594–605. doi: 10.1016/j.kjms.2013.04.001.
  54. Barallobre-Barreiro J, Oklu R, Lynch M, Fava M, Baig F, Yin X, Barwari T, Potier DN, Albadawi H, Jahangiri M, Porter KE, Watkins MT, Misra S, Stoughton J, Mayr M. Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins. Cardiovasc Res. 2016;110(3):419–430. doi: 10.1093/cvr/cvw075.
  55. Studennikova VV, Severgina LO, Sinyavin GV, Rapoport LM, Korovin IA. Venous wall weackness pathogenesis in varicose vein disease. Pirogov Journal of Surgery. 2019;(10):69–74. (In Russ.) doi: 10.17116/hirurgia201910169.
  56. Xu N, Zhang YY, Lin Y, Bao B, Zheng L, Shi GP, Liu J. Increased levels of lysosomal cysteinyl cathepsins in human varicose veins: A histology study. Thromb Haemost. 2014;111(2):333–44. doi: 10.1160/TH13-04-0309.
  57. Kocarslan S, Kocarslan A, Doganer A, Yasim A. What is the relationship of varicose vein pathogenesis with collagen fibers? Niger J Clin Pract. 2022;25(3):304–309. doi: 10.4103/njcp.njcp_1505_21.
  58. Yarmolinskaya MI, Molotkov AS, Denisova VM. Matrix metalloproteinases and inhibitors: classification, mechanism of action. Journal of Obstetrics and Women's Diseases. 2012;61(1):113–125. (In Russ.)
  59. Kashirskikh DA, Khotina VA, Sukhorukov VN, Sobenin IA, Orekhov AN. Cell and tissue markers of atherosclerosis. Complex Issues of Cardiovascular Diseases. 2020;9(2):102–113. (In Russ.) doi: 10.17802/2306-1278-2020-9-2-102-113.
  60. Lukyanova YuS, Pokrovskii MV. Basic pathophysiological and molecular mechanisms of chronic venous diseases and their pharmacological correction. Cli-nical pharmacology and therapy. 2019;(3):52–61. (In Russ.) doi: 10.32756/0869-5490-2019-3-52-61.
  61. Barrett AJ. Proteases. Curr Protoc Protein Sci. 2001;21(21):1. doi: 10.1002/0471140864.ps2101s21.
  62. Scarcella M, d'Angelo D, Ciampa M, Tafuri S, Avallone L, Pavone LM, De Pasquale V. The key role of lysosomal protease cathepsins in viral infections. Int J Mol Sci. 2022;23(16):9089. doi: 10.3390/ijms23169089.
  63. Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother. 2018;105:526–532. doi: 10.1016/j.biopha.2018.05.148.
  64. Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008;90(2):194–207. doi: 10.1016/j.biochi.2007.07.024.
  65. Bol'shaya meditsinskaya entsiklopediya (BME). (The Great Medical Encyclopedia (GME)). Edited by BV Petrovsky. 3rd edition. Vol. 10. M.: Sovetskaya entsiklopediya; 1979. 528 p. (In Russ.)
  66. Mijanovich O, Petushkova AI, Brankovich A, Terk B, Soloviova AB, Nikitkina AI, Bolevich S, Timashev PS, Parodi A, Zamyatnin AA Jr. Cathepsin D — managing the delicate balance. Pharmaceutics.2021;13:837. doi: 10.3390/pharmaceutics13060837.
  67. Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The ins and outs of cathepsins: Physiological function and role in disease management. Cells. 2020;9(7):1679. doi: 10.3390/cells9071679.
  68. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S. Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 2007;21(12):3029–3041. doi: 10.1096/fj.06-7924com.
  69. Schmitz J, Gilberg E, Löser R, Bajorath J, Bartz U, Gütschow M. Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorg Med Chem. 2019;27(1):1–15. doi: 10.1016/j.bmc.2018.10.017.
  70. Frlan R, Gobec S. Inhibitors of cathepsin B. Curr Med Chem. 2006;13(19):2309–2327. doi: 10.2174/092986706777935122.
  71. Korenč M, Lenarčič B, Novinec M. Human cathepsin L, a papain-like collagenase without proline specificity. FEBS J. 2015;282(22):4328–4340. doi: 10.1111/febs.13499.
  72. Shi X, Zhang Y. A humanized antibody inhibitor for cathepsin L. Protein Sci. 2020;29(9):1924–1930. doi: 10.1002/pro.3913.
  73. Rojnik M, Jevnikar Z, Mirkovic B, Janes D, Zidar N, Kikelj D, Kos J. Cathepsin H indirectly regulates morphogenetic protein-4 (BMP-4) in various human cell lines. Radiol Oncol. 2011;45(4):259–266. doi: 10.2478/v10019-011-0034-3.
  74. Hao Y, Purtha W, Cortesio C, Rui H, Gu Y, Chen H, Sickmier EA, Manzanillo P, Huang X. Crystal structures of human procathepsin H. PLoS One. 2018;13(7):e0200374. doi: 10.1371/journal.pone.0200374.
  75. Wang Y, Zhao J, Gu Y, Wang H, Jiang M, Zhao S, Qing H, Ni J. Cathepsin H: Molecular characteristics and clues to function and mechanism. Biochem Pharmacol. 2023;212:115585. doi: 10.1016/j.bcp.2023.115585.
  76. Singh S, Sharma S, Agarwal SK. A simple purification procedure of buffalo lung cathepsin H, its properties and influence of buffer constituents on the enzyme activity. Biochem Biophys Rep. 2020;22:100739. doi: 10.1016/j.bbrep.2020.100739.
  77. Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol. 2019;75–76:141–159. doi: 10.1016/j.matbio.2018.01.024.
  78. Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine cathepsins and their extracellular roles: Shaping the microenvironment. Cells. 2019;8(3):264. doi: 10.3390/cells8030264.
  79. Golovkin AS, Grigor'ev EV, Matveeva VG, Velikanova EA. Role of cathepsins in pathogenesis and progressing of atherosclerosis. Cardiology and cardiovascular surgery. 2012;5(4):9–12. (In Russ.)
  80. Cheng XW, Sasaki T, Kuzuya M. The role of cysteinyl cathepsins in venous disorders. Thromb Haemost. 2014;112(1):216–218. doi: 10.1160/TH13-10-0889.
  81. Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther. 2011;131(3):338–350. doi: 10.1016/j.pharmthera.2011.04.010.
  82. Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol. 2003;23(12):2146–2154. doi: 10.1161/01.ATV.0000099882.52647.E4.

© 2023 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies