Intervertebral disc homeostasis at normal conditions and during pathology

Cover Page

Cite item

Full Text

Abstract

Intervertebral discs are rather complex structural units of the spine. It is believed that a disturbance of the factors of their homeostasis immediately leads to changes in the bone tissue of the vertebral bodies and, consequently, to pathological changes at the level of the vertebral-motor segment. It follows that the maintenance of normal metabolism within the discs is one of the key directions in the prevention of many clinically important lesions involving the entire vertebral complex. The causes of metabolic processes disorders in the intervertebral disc can be divided into several levels: chronic diseases that directly affect the blood supply to the spinal column as a whole; diseases that affect the permeability of the capillary zone of the subchondral zone of the vertebral bodies; disturbances in the delivery of nutrients into the disc through its matrix, which serves an important selective barrier. However, regardless of the level of the causes of metabolic disorders, all of which eventually lead to anatomical and functional changes in the intervertebral discs and to their subsequent incapacity to provide the daily life cycle of the vertebral complex, consisting of periods of stress and relaxation. Thus, based on the known literature data we can conclude that: the intervertebral discs to date, remain poorly understood elements, however even from a narrow range of studies on this subject it is evident that their functionality is largely dependent on the properties of the disc matrix and the interstitial nature of metabolic processes.

About the authors

A E Kobyzev

Russian Scientific Center «Restorative Traumatology and Orthopedics» named after G.A. Ilizarov, Kurgan, Russia

Email: andrey_kobizev@mail.ru

References

  1. Жарков П.Л. Остеохондроз и другие дистрофические изменения позвоночника у взрослых и детей. - М.: Медицина, 1994. - 191 с.
  2. Попелянский Я.Ю. Ортопедическая неврология (вертебрология). Руководство для врачей. - М.: МЕДпресс-информ, 2008. - 672 с.
  3. Сак Н.Н. Особенности и варианты строения поясничных межпозвонковых дисков человека // Арх. анатомии. - 1991. - №1. - С. 74-86.
  4. Семёнова Г.А. Динамика структурных изменений межпозвоночного диска в условиях частичного нарушения сегментарного кровоснабжения позвоночника / Закономерности морфогенеза опорных структур позвоночника и конечностей на различных этапах онтогенеза. - Ярославль, 1990. - С. 10-13.
  5. Ayotte D.C., Ito K., Perren S.M. et al. Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve // J. Biomech. Eng. - 2000. - Vol. 122. - P. 587-593.
  6. Babhulkar S. Osteonecrosis in sickle cell disease. In: Osteonecrosis: etiology, diagnosis, and treatment / Eds. J.R. Urbaniak, J.P.Jr. Jones. - American Academy of Orthopaedic Surgeons, 1997. - P. 131-133.
  7. Boubriak O.A., Urban J.P., Akhtar S. et al. The effect of hydration and matrix composition on solute diffusion in rabbit sclera // Exp. Eye Res. - 2000. - Vol. 71. - P. 503-514.
  8. Chandraraj S., Briggs C.A., Opeskin K. Disc herniations in the young and end-plate vascularity // Clin. Anat. - 1998. - Vol. 11. - P. 171-176.
  9. Chiba K., Toyama Y., Matsumoto M. et al. Intraspinal cyst communicating with the intervertebral disc in the lumbar spine: discal cyst // Spine. - 2001. - Vol. 26. - P. 2112-2118.
  10. Ferguson S.J., Ito K., Nolte L.P. Fluid flow and convective transport of solutes within the intervertebral disc // J. Biomech. - 2004. - Vol. 37. - P. 213-221.
  11. Jones J.P.Jr. Subchondral osteonecrosis can conceivably cause disk degeneration and primary osteoarthritis. In: Osteonecrosis: etiology, diagnosis, and treatment / Eds. J.R. Urbaniak, J.P.Jr. Jones. - American academy of orthopaedic surgeons, 1997. - P. 135-142.
  12. Kauppila L.I. Prevalence of stenotic changes in arteries supplying the lumbar spine. A postmortem angiographic study on 140 subjects // Ann. Rheum. Dis. - 1997. - Vol. 56. - P. 591-623.
  13. Kitano T., Zerwekh J.E., Usui Y. et al. Biochemical changes associated with the symptomatic human intervertebral disk // Clin. Orthop. - 1993. - Vol. 293. - P. 372-377.
  14. Kurunlahti M., Tervonen O., Vanharanta H. et al. Association of atherosclerosis with low back pain and the degree of disc degeneration // Spine. - 1999. - Vol. 24. - P. 2080-2084.
  15. Mauck R.L., Hung C.T., Ateshian G.A. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering // J. Biomech. Eng. - 2003. - Vol. 125. - P. 602-614.
  16. Moore R.J., Osti O.L., Vernon-Roberts B. et al. Changes in endplate vascularity after an outer annulus tear in the sheep // Spine. - 1992. - Vol. 17. - P. 874-878.
  17. Nguyen-Minh C., Haughton V.M., Papke R.A. et al. Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium // AJNR Am. J. Neuroradiol. - 1998. - Vol. 19. - P. 1781-1784.
  18. Nimer E., Schneiderman R., Maroudas A. Diffusion and partition of solutes in cartilage under static load // Biophys. Chem. - 2003. - Vol. 106. - P. 125-146.
  19. O’Hara B.P., Urban J.P., Maroudas A. Influence of cyclic loading on the nutrition of articular cartilage // Ann. Rheum. Dis. - 1990. - Vol. 49. - P. 536-539.
  20. Oegema T.R.Jr. Biochemistry of the intervertebral disc // Clin. Sports Med. - 1993. - Vol. 12. - P. 419-439.
  21. Ohyama K., Farquharson C., Whitehead C.C. et al. Further observations on programmed cell death in the epiphyseal growth plate: comparison of normal and dyschondroplastic epiphyses. // J. of Bone & Mineral Res. - 1997 - Vol. 12. - P. 1647-1656.
  22. Oki S., Matsuda Y., Shibata T. et al. Morphologic differences of the vascular buds in the vertebral endplate: scanning electron microscopic study // Spine. - 1996. - Vol. 21. - P. 174-177.
  23. Riley L.H.3rd, Banovac K., Martinez O.V. et al. Tissue distribution of antibiotics in the intervertebral disc // Spine. - 1994. - Vol. 19. - P. 2619-2625.
  24. Roberts S., Urban J.P.G., Evans H. et al. Transport properties of the human cartilage endplate in relation to its composition and calcification // Spine. - 1996. - Vol. 21. - P. 415-420.
  25. Rudert M., Tillmann B. Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods // Ann. Anat. - 1993. - Vol. 175. - P. 237-242.
  26. Tai C.C., Want S., Quraishi N.A. et al. Antibiotic prophylaxis in surgery of the intervertebral disc. A comparison between gentamicin and cefuroxime // J. Bone Jt. Surg. - 2002. - Vol. 84-B. - P. 1036-1039.
  27. Terahata N., Ishihara H., Ohshima H. et al. Effects of axial traction stress on solute transport and proteoglycan synthesis in the porcine intervertebral disc in vitro // Eur. Spine. J. - 1994. - Vol. 3. - P. 325-330.
  28. Thomas R.W., Batten J.J., Want S. et al. A new in vitro model to investigate antibiotic penetration of the intervertebral disc // J. Bone Jt. Surg. - 1995. - Vol. 77-B. - P. 967-970.
  29. Urban M.R., Fairbank J.C., Bibby S.R. et al. Intervertebral disc composition in neuromuscular scoliosis: changes in cell density and glycosaminoglycan concentration at the curve apex // Spine. - 2001. - Vol. 26. - P. 610-617.
  30. Urban M.R., Fairbank J.C., Etherington P.J. et al. Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer // Spine. - 2001. - Vol. 26. - P. 984-990.
  31. Wallace A.L., Wyatt B.C., McCarthy I.D. et al. Humoral regulation of blood flow in the vertebral endplate // Spine. - 1994. - Vol. 19. - P. 1324-1328.

© 2012 Kobyzev A.E.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies