Premature newborns: Actual problems of raising and prevention of adverse consequences
- 作者: Evsyukova I.I.1
-
隶属关系:
- The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
- 期: 卷 70, 编号 3 (2021)
- 页面: 93-102
- 栏目: Reviews
- URL: https://journals.rcsi.science/jowd/article/view/65228
- DOI: https://doi.org/10.17816/JOWD65228
- ID: 65228
如何引用文章
详细
The review summarizes the literature data on the perinatal pathology of premature infants, the frequency of their development in the following months and years of life of neuropsychiatric and somatic diseases. The results of experimental and clinical studies are presented, revealing the general pathogenetic mechanism – oxidative stress, underlying bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, periventricular leukomalacia, open ductus arteriosus and persistent pulmonary hypertension. The interrelation of the processes of inflammation and oxidative stress, which play a leading role in the brain damage of the fetus and newborn, is considered. The literature data on the possibility of preventing severe complications in the antenatal period of development with the timely use of surfactant, magnesium sulfate and acetylcysteine are presented, It is emphasized that the first hours of a premature baby's life are a critical period for an individual approach to resuscitation, the beginning and effectiveness of drug therapy aimed at suppressing oxidative stress and systemic inflammation, which is confirmed by modern trends in optimizing the care of premature babies using pentoxifylline, erythropoietin, cortexin and melatonin.
作者简介
Inna Evsyukova
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
编辑信件的主要联系方式.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN 代码: 4444-4567
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Saint Petersburg参考
- Vogel JP, Chawanpaiboon S, Moller AB, et al. The global epidemiology of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:3–12. doi: 10.1016/j.bpobgyn.2018.04.003
- Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–38. doi: 10.2471/BLT.08.062554
- Lorenz JM. Survival and long-term neurodevelopmental outcome of the extremely preterm infant. A systematic review. Saudi Med J. 2011;32(9):885–894.
- American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Obstetric Care consensus No. 6: Periviable Birth. Obstet Gynecol. 2017;130(4):e187–e199. doi: 10.1097/AOG.0000000000002352
- Dem’janova TG, Grigor’janc LJa, Avdeeva TG, Zumjancev AG. Nabljudenie za gluboko nedonoshennymi det’mi na pervom godu zhizni. Moscow: Medpraktika; 2006. (In Russ.)
- Xiong T, Gonzalez F, Mu DZ. An overview of risk factors for poor neurodevelopmental outcome associated with prematurity. World J Pediatr. 2012;8(4):293–300. doi: 10.1007/s12519-012-0372-2
- Linsell L, Johnson S, Wolke D, et al. Trajectories of behavior, attention, social and emotional problems from childhood to early adulthood following extremely preterm birth: a prospective cohort study. Eur Child Adolesc Psychiatry. 2019;28(4):531–542. doi: 10.1007/s00787-018-1219-8
- Younge N, Goldstein RF, Cotton CM; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Survival and neurodevelopment of periviable infants. N Engl J Med. 2017;376(19):1890–1891. doi: 10.1056/NEJMc1703379
- Pierrat V, Marchand-Martin L, Arnaud C, et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ. 2017;358:j3448. doi: 10.1136/bmj.j3448
- Aarnoudse-Moens CSH, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth Weight children. Pediatrics. 2009;124(2):717–728. doi: 10.1542/peds.2008-2816
- Sakharova ES, Keshishyan ES Alyamovskaya GA. Mental and motor development of pre-term children with a birth body weight under 1000 g: Specific features of assessment. Rossijskiy vestnik perinatologii i pediatrii. 2002;47(4):20–24. (In Russ.)
- van der Pal S, Steinhof M, Grevinga M, et al. Quality of life of adults born very preterm or very low birth weight: A systematic review. Acta Paediatr. 2020;109(10):1974–1988. doi: 10.1111/apa.15249.
- DuBow A, Mourot A, Tourjman SV. Chiari malformation and attention deficit hyperactivity disorder. Case Rep Med. 2020;2020:2694956. doi: 10.1155/2020/2694956
- Aronskind EV, Kovtun OP, Kabdrahmanova OT, et al. Sravnitel’nye rezul’taty katamnesticheskogo nabljudenija detej, perenesshih kriticheskie sostojanija. Pediatria Journal named after GN Speransky. 2010;89(1):48–50. (In Russ.)
- Saugstad OD. Oxidative stress in the newborn — a 30-year perspective. Biol Neonate. 2005;88(3):228–236. doi: 10.1159/000087586
- D’Angelo G, Chimenz R, Reiter RJ, Gitto E. Use of melatonin in oxidative stress related neonatal diseases. Antioxidant (Basel). 2020;9(6):477. doi: 10.3390/antiox9060477
- Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 2002;4(5):769–781. doi: 10.1089/152308602760598918
- Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191–195. doi: 10.1016/j.siny.2010.04.001
- Perez M, Robbins ME, Revhaugc C, Saugstadb OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med. 2019;142:61–72. doi: 10.1016/j.freeradbiomed.2019.03.035
- Morton S, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016; 43(3):395–407. doi: 10.1016/j.clp.2016.04.001
- Perrone S, Tataranno ML, Negro S, et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev. 2010;86(4):241–244. doi: 10.1016/j.earlhumdev.2010.03.008
- Gitto E, Marseglia L, Manti S, et al. Protective role of melatonin in neonatal diseases. Oxidative Med Cell Longev. 2013;2013:980374. doi: 10.1155/2013/980374
- Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev. 2017;4(4):CD011190. doi: 10.1002/14651858.CD011190.pub2
- Datta A, Kim GA, Taylor JM, et al. Mouse lung development and NOX1 induction during hyperoxia are developmentally regulated and mitochondrial ROS dependent. Am J Physiol Lung Cell Mol Physiol. 2015;309(4):369–377. doi: 10.1152/ajplung.00176.2014
- Berkelhamer SK, Kim GA, Radder JE, et al. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med. 2013;61:51–60. doi: 10.1016/j.freeradbiomed.2013.03.003
- Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate. 2002;81(3):146–157. doi: 10.1159/000051527
- Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med. 2019;142:113–122. doi: 10.1016/j.freeradbiomed.2019.04.028
- Barton SK, Tolcos M, Miller SL, et al. Ventilation-induced brain injury in preterm neonates: A review of potential therapies. Neonatology. 2016;110:155–162. doi: 10.1159/000444918
- Schultz C, Tautz J, Reiss I, Moller JC. Prolonged mechanical ventilation induces pulmonary inflammation in preterm infants. Biol Neonate. 2003;84(1):64–66. doi: 10.1159/000071446
- Markus T, Hansson S, Amer-Wahlin I, et al. Cerebral inflammatory response after fetal asphyxia and hyperoxic resuscitation in newborn sheepю. Pediatr Res. 2007;62(1):71–77. doi: 10.1203/PDR.0b013e31811ead6e
- Yanowitz TD, Jordan JA, Gilmour CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: Association with cord blood cytokine concentrations. Pediatric Res. 2002;51(3):310–316. doi: 10.1203/00006450-200203000-00008
- Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol. 2013;8(1):66–78. doi: 10.1007/s11481-012-9347-2
- McAdams RM, Juul SE. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int. 2012;2012:561494. doi: 10.1155/2012/561494
- Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury. Pediatr Int. 2011;53(4):454–462. doi: 10.1111/j.1442-200X.2010.03290.x
- Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional? Epigenetic? And physiological integration during development. J Clin Invest. 2010;120(4):1016–1025. doi: 10.1172/JCI41211
- Schreuder AM, McDonnell M, Gaffney G, et al. Outcome at school age following antenatal detection of absent or reversed end diastolic flow velocity in the umbilical artery. Arch Dis Child Fetal Neonatal Ed. 2002;86:F108–114. doi: 10.1136/fn.86.2.f108
- van der Burg JW, Sen S, Chomitz VR, et al. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr Res. 2016;79(1–1):3–12. doi: 10.1038/pr.2015.179
- Ogata J, Yamanishi H, Ishibashi-Ueda H. Review: role of cerebral vessels in ischaemic injury of the brain. Neuropathol Appl Neurobiol. 2011;37(1):40–55. doi: 10.1111/j.1365-2990.2010.01141.x
- Cummings JJ, Polin RA, COMMITTEE ON FETUS AND NEWBORN. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(6):e20162904. doi: 10.1542/peds.2016-2904
- Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;19(3):CD004454. doi: 10.1002/14651858.CD004454.pub2
- Ryan M, Lacaze-Masmonteil T, Mohammad K. Neuroprotection from acute brain injury in preterm infants. Paediatrics. Child Health; 2019;24(4):276–290. doi: 10.1093/pch/pxz056
- Vogel JP, Oladapo OT, Manu A, et al. New WHO recommendations to improve the outcomes of preterm birth. Lancet Glob Health. 2015;3(10):e589–590. doi: 10.1016/S2214-109X(15)00183-7
- Doyle LW, Crowther CA, Middleton P, et al. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009;(1):CD004661. doi: 10.1002/14651858.CD004661.pub3
- Crowther CA, Middleton PF, Voysey M, et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: An individual participant data meta-analysis. PLoS Med. 2017;14(10):e1002398. doi: 10.1371/journal.pmed.1002398
- Gibbins KJ, Browning KR, Lopes VV, et al. Evaluation of the clinical use of magnesium sulfate for cerebral palsy prevention. Obstet Gynecol. 2013;121(2 Pt 1):235–240. doi: 10.1097/aog.0b013e31827c5cf8
- Magee L, Sawchuck D, Synnes A, von Dadelszen P; Magnesium Sulphate for Fetal Neuroprotection Consensus Committee; Maternal Fetal Medicine Committee. SOGC Clinical Practice Guideline. Magnesium sulphate for fetal neuroprotection. J Obstet Gynaecol Can. 2011;33(5):516–529. doi: 10.1016/S1701-2163(16)34886-1
- Wang X, Svedin P, Nie C, et al. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol. 2007;61:263–271. doi: 10.1002/ana.21066
- Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am J Obstet Gynecol. 2003;188(1):203–208. doi: 10.1067/mob.2003.112
- Jenkins DD, Wiest DB, Mulvihill DM, et al. Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J Pediatr. 2016;168:67–76.e6. doi: 10.1016/j.jpeds.2015.09.076
- Wiest DB, Chang E, Fanning D, et al. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr. 2014;165(4):672–677. doi: 10.1016/j.jpeds.2014.06.044
- Li S, Guo P, Zou Q, et al. Efficacy and safety of plastic wrap for prevention of hypothermia after birth and during NICU in preterm infants: A systematic review and meta-analysis. PLoS One. 2016;11(6):e0156960. doi: 10.1371/journal.pone.0156960
- Nist MD. The biological embedding of neonatal stress exposure: A conceptual model describing the mechanisms of stress-induced neurodevelopmental impairment in preterm infants. Res Nurs Health. 2019;42(1):61–71. doi: 10.1002/nur.21923
- Fogarty M, Osborn DA, Askie L, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(1):1–18. doi: 10.1016/j.ajog.2017.10.231
- Lui K, Jones LJ, Foster JP, et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst Rev. 2018;5(5):CD010239. doi: 10.1002/14651858.CD010239.pub2
- Kosov MN, Evsyukova II. Jeffektivnost’ primenenija jekzogennogo surfaktanta u novorozhdennyh detej. Rossijskiy vestnik perinatologii i pediatrii. 2000;45(6):20–24. (In Russ.)
- Hagberg H, Mallard C, Ferriero DM, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11(4):192–208. doi: 10.1038/nrneurol.2015.13
- Dilek M, Kumral A, Okyay E, et al. Protective effects of pentoxifylline on lipopolysaccharide-induced white matter injury in a rat model of periventricular leukomalasia. J Matern Fetal Neonatal Med. 2013;26(18):1865–1871. doi: 10.3109/14767058.2013.798290
- Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinatol. 2015;42(3):469–481. doi: 10.1016/j.clp.2015.04.004
- Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol. 2014;51(4):481–488. doi: 10.1016/j.pediatrneurol.2014.06.008
- Ohlsson A, Sanjay M, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2017;11(11):CD004863. doi: 10.1002/14651858.CD004863.pub5
- Platonova TN, Ryzhak GA. Primenenie korteksina pri zabolevanii central’noj nervnoj sistemy u detej. Medicinskie rekomendacii. Saint Petersburg: Foliant; 2000. (In Russ.)
- Koval’chuk-Kovalevskaja OV, Evsjukova II. Ispol’zovanie nejroprotekcii v lechenii novorozhdennyh detej s zaderzhkoj funkcional’nogo razvitija CNS. Pediatria Journal named after GN Speransky. 2012;91(6):129–134. (In Russ.)
- Biran V, Phan Duy A, Decobert F, et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol. 2014;56(8):717–723. doi: 10.1111/dmcn.12415
- Tarocco A, Caroccia N, Morciano G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):317. doi: 10.1038/s41419-019-1556-7
- Merchant N, Azzopardi D, Counsell S, et al. Melatonin as a novel neuroprotectant in preterm infants – a double blinded randomised controlled trial (Mint Study). Arch. Dis. Child. 2014;99(Suppl 2):A43–A43. doi: 10.1136/archdischild-2014-307384.125. [cited 2021 Apr 25]. Available from: https://adc.bmj.com/content/archdischild/99/Suppl_2/A43.2.full.pdf
- Aversa S, Pellegrino S, Barberi I, et al. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med. 2012;25(3):207–221. doi: 10.3109/14767058.2011.573827
- Marseglia L, Manti S, D’Angelo G, et al. Melatonin for the newborn. J Pediatr Neonat Individ Med. 2014;3(2):e030232. doi: 10.7363/030232
- Gitto E. Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: A possible role of melatonin. Am J Perinatol. 2015;32(10):905–909. doi: 10.1055/s-0035-1547328
- Tordjman S, Chokron S, Delorme R, et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434–443. doi: 10.2174/1570159X14666161228122115
补充文件
