Placental morphology in different types of diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AIM: The aim of this study was to compare placental morphological features from women with different types of diabetes mellitus considering method of DM correction.

MATERIALS AND METHODS: A retrospective, single-center, cohort study was carried out. We analyzed morphological examination results of 3300 placentas, which made uр the following comparison groups: type 1 diabetes mellitus on continuous subcutaneous insulin infusion (n = 60), type 1 diabetes mellitus on multiple subcutaneous insulin injections (n = 446), type 2 diabetes mellitus on diet (n = 95), type 2 diabetes mellitus on insulin therapy (n = 134), gestational diabetes mellitus on diet (n = 1652), gestational diabetes mellitus on insulin therapy (n = 735), preeclampsia (n = 39), and the control group (n = 139). The examined placentas were weighed, with their sizes (two diameters and thickness), cotyledon structure and defects assessed. We determined the umbilical cord junction and external characteristics of extraembryonic membranes. Fragments of the placenta (5 pieces) were fixed in 10% neutral buffered formalin (pH 7.2), processed with the Leica TP1020 tissue processor and embedded in paraffin. Histological sections (3-4 μm thick) were prepared and stained with hematoxylin-eosin. Statistical analysis was performed using the SPSS 23.0 and GraphPad Prism 8.0 software.

RESULTS: Following characteristics were typical for all types of diabetes mellitus: increased placental mass metrics, chronic placental insufficiency, dissociated villous maturation disorder with prevalent immaturity, as well as involutive-dystrophic and circulatory disorders of varying severity. Placentas from women with type 1 diabetes mellitus had the specific sings: the predominance of intermediate immature villi and stem villi stromal fibrosis. The frequency of placental infarcts and fibrinoid content in the intervillous space were comparable to those in placentas from women with type 2 diabetes mellitus. Inflammatory changes and moderate placental calcification were most consistently associated with type 2 diabetes mellitus, while gestational diabetes mellitus was characterized by “soft” damages. Placentas with preeclampsia showed higher prevalence of premature villous maturation, compensated placental insufficiency, and fibrinoid depositions in the intervillous and subchorionic spaces.

CONCLUSIONS: Understanding relationships between placental histological features and clinical aspects of diabetes mellitus makes it possible not only to clarify the pathophysiological processes occurring in this pathology but also to optimize the algorithm for the rational management of the neonatal period of children from mothers with diabetes mellitus.

About the authors

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State University

Author for correspondence.
Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260
ResearcherId: G-3759-2015

MD, PhD

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034

Ekaterina V. Kopteyeva

Saint Petersburg State University

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407

MD

Russian Federation, Saint Petersburg

Tatyana G. Tral

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631
Scopus Author ID: 37666260400

MD, PhD

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: gulyatolibova@yandex.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825
Scopus Author ID: 23111355700
ResearcherId: Y-6671-2018

MD, PhD, DSci (Medicine)

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034; Saint Petersburg

References

  1. Starikov RS, Inman K, Has P, et al. Correlation of placental pathology and perinatal outcomes with hemoglobin A1c in early pregnancy in gravidas with pregestational diabetes mellitus. Placenta. 2017;52:94–99. doi: 10.1016/j.placenta.2017.02.024
  2. International Diabetes Federation. IDF Diabetes Atlas. 9th edn. Brussels: International Diabetes Federation; 2019. [cited: 2020 Dec 18]. Available from: https://www.diabetesatlas.org/en/
  3. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140:698–713. doi: 10.5858/arpa.2015-0225-CC
  4. Blackburn S. Maternal, fetal neonatal physiology. 4th ed. Maryland Heights: Saunders; 2013.
  5. Cuffe JSM, Holland O, Salomon C, et al. Review: Placental derived biomarkers of pregnancy disorders. Placenta. 2017;54:104–110. doi: 10.1016/j.placenta.2017.01.119
  6. Schoots MH, Gordijn SJ, Scherjon SA, et al. Oxidative stress in placental pathology. Placenta. 2018;69:153–161. doi: 10.1016/j.placenta.2018.03.003
  7. American Diabetes Association. Standards of medical care in diabetes – 2014. Diabetes Care. 2014;37(Suppl 1):S14-80. doi: 10.2337/dc14-s014
  8. Hod M, Jovanovic LG, Di Renzo GC, et al. Textbook of diabetes and pregnancy. 3rd ed. London: CRC Press; 2016. doi: 10.1201/9781315382104
  9. Hahn T, Barth S, Weiss U, et al. Sustained hyperglycemia in vitro down-regulates the GLUTI glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12(12):1221–1231. doi: 10.1096/fasebj.12.12.1221
  10. Osmond DT, Nolan CJ, King RG, et al. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43(5):576–582. DOI: 10.1007/ s001250051346
  11. Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192(2):610–617. DOI: 10.1016/j. ajog.2004.08.011
  12. Kapustin RV, Onopriychuk AR, Arzhanova ON, et al. Pathophysiology of placenta and fetus in diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2018;67(6):79–92. (In Russ.). doi: 10.17816/JOWD67679-92
  13. Huynh J, Dawson D, Roberts D, et al. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36(2):101–114. doi: 10.1016/j.placenta.2014.11.021
  14. Roescher AM, Hitzert MM, Timmer A, et al. Placental pathology is associated with illness severity in preterm infants in the first twenty-four hours after birth. Early Hum Dev. 2011;87(4):315–319. doi: 10.1016/j.earlhumdev.2011.01.040
  15. Taricco E, Radaelli T, Nobile de Santis MS, et al. Fetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta. 2003;24(4):343–347. doi: 10.1053/plac.2002.0913
  16. Evers IM, Nikkels PG, Sikkema JM, et al. Placental pathology in women with type 1 diabetes and in a control group with normal and large-for-gestational-age infants. Placenta. 2003;24(8–9):819–825. doi: 10.1016/s0143-4004(03)00128-0
  17. Tral TG, Tolibova GKh, Musina EV, et al. Molecular and morphological peculiarities of chronic placental insufficiency formation caused by different types of diabetes mellitus. Diabetes Mellitus. 2020;23(2):185–191. (In Russ.). doi: 10.14341/DM10228
  18. Desoye G, Hauguel-de Mouzon S. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care. 2007;30(Suppl 2):120–126. doi: 10.2337/dc07-s203
  19. Huynh J, Yamada J, Beauharnais C, et al. Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta. 2015;36(10):1161–1166. doi: 10.1016/j.placenta.2015.08.004
  20. Daskalakis G, Marinopoulos S, Krielesi V, et al. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87(4):403–407. doi: 10.1080/00016340801908783
  21. Madazli R, Tuten A, Calay Z, et al. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol Obstet Invest. 2008;65(4):227–232. doi: 10.1159/000113045
  22. Higgins MF, Russell NM, Mooney EE, et al. Clinical and ultrasound features of placental maturation in pre-gestational diabetic pregnancy. Early Hum Dev. 2012;88(10):817–821. doi: 10.1016/j.earlhumdev.2012.06.001
  23. Tennant PW, Glinianaia SV, Bilous RW, et al. Pre-existing diabetes, maternal glycated haemoglobin, and the risks of fetal and infant death: a population-based study. Diabetologia. 2014;57(2):285–294. doi: 10.1007/s00125-013-3108-5
  24. Leach L, Taylor A, Sciota F. Vascular dysfunction in the diabetic placenta: causes and consequences. J Anat. 2009;215(1):69–76. doi: 10.1111/j.1469-7580.2009.01098.x
  25. Mayhew TM. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta. 2002;23(10):742–750. doi: 10.1016/s0143-4004(02)90865-9
  26. Mayhew TM. Enhanced fetoplacental angiogenesis in pre-gestational diabetes mellitus: the extra growth is exclusively longitudinal and not accompanied by microvascular remodelling. Diabetologia. 2002;45(10):1434–1439. doi: 10.1007/s00125-002-0927-1
  27. Jirkovská M, Janácek J, Kaláb J, et al. Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta. Placenta. 2008;29(10):892–897. doi: 10.1016/j.placenta.2008.07.004
  28. Shams F, Rafique M, Samoo NA, et al. Fibrinoid necrosis and hyalinization observed in normal, diabetic and hypertensive placentae. J Coll Physicians Surg Pak. 2012;22(12):769–772.
  29. Beauharnais CC, Roberts DJ, Wexler DJ. High rate of placental infarcts in type 2 compared with type 1 diabetes. J Clin Endocrinol Metab. 2012;97(7):E1160–1164. doi: 10.1210/jc.2011-3326
  30. Rudge MV, Lima CP, Damasceno DC, et al. Histopathological placental lesions in mild gestational hyperglycemic and diabetic women. Diabetol Metab Syndr. 2011;3(1):19. doi: 10.1186/1758-5996-3-19
  31. al-Okail MS, al-Attas OS. Histological changes in placental syncytiotrophoblasts of poorly controlled gestational diabetic patients. Endocr J. 1994;41(4):355–360.
  32. Younes B, Baez-Giangreco A, al-Nuaim L, et al. Basement membrane thickening in the placentae from diabetic women. Pathol Int. 1996;46(2):100–104. doi: 10.1111/j.1440-1827.1996.tb03585.x
  33. Negrato CA, Mattar R, Gomes MB. Adverse pregnancy outcomes in women with diabetes. Diabetol Metab Syndr. 2012;4(1):41. doi: 10.1186/1758-5996-4-41
  34. Calderon IM, Damasceno DC, Amorin RL, et al. Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res Clin Pract. 2007;78(1):65–71. doi: 10.1016/j.diabres.2007.01.023
  35. Ajlamazjan JeK, Abashova EI, Arzhanova ON, et al. Saharnyj diabet i reproduktivnaja sistema zhenshhiny: rukovodstvo dlja vrachej. Moscow: GEOTAR-Media; 2017. (In Russ.)
  36. Predoi CG, Grigoriu C, Vladescu R, et al. Placental damages in preeclampsia – from ultrasound images to histopathological findings. J Med Life. 2015;8 Spec Issue:62–65.
  37. Vinnars MT, Nasiell J, Ghazi S, et al. The severity of clinical manifestations in preeclampsia correlates with the amount of placental infarction. Acta Obstet Gynecol Scand. 2011;90:19–25. DOI: abs/10.1111/j.1600-0412.2010.01012.x
  38. Zigić Z, Marković S, Grbesa D, et al. Quantitative research of capillaries in terminal villi of mature placentae. Bosn J BasicMedSci. 2010;10:147–152. doi: 10.17305/bjbms.2010.2714
  39. Fitzgerald B, Shannon P, Kingdom J, et al. Rounded intraplacental haematomas due to decidual vasculopathy have a distinctive morphology. J ClinPathol. 2011;64:729–732. doi: 10.1136/jcp.2010.087916
  40. Burton GJ, Jauniaux E, Charnock-Jones DS. The influence of the intrauterine environment on human placental development. Int J DevBiol. 2010;54:303–312. doi: 10.1387/ijdb.082764gb

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chronic placental insufficiency with a predominance of intermediate immature chorionic villi with hypervascularization and congestive plethora in type 1 DM. Staining with hematoxylin and eosin, ×100

Download (387KB)
3. Fig. 2. Dissociated chronic placental insufficiency in type 2 DM. Staining with hematoxylin and eosin, ×100

Download (336KB)
4. Fig. 3. Fibrinoid villous alteration in type 1 DM on multiple insulin injections. Staining with hematoxylin and eosin, ×100

Download (343KB)
5. Fig. 4. Increased number of syncytial knots in type 1 DM. Staining with hematoxylin and eosin, ×200

Download (296KB)
6. Fig. 5. Congestion of the vascular bed of intermediate and terminal chorionic villi in the placenta in GDM. Staining with hematoxylin and eosin, ×200

Download (273KB)
7. Fig. 6. Hypoplastic form of chronic placental insufficiency. Staining with hematoxylin and eosin, ×100

Download (287KB)

Copyright (c) 2021 Eсо-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies