Morphogenesis of decidual transformation of the endometrium. A literature review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Decidual transformation of the endometrium is the final stage of the cyclic endometrial transformation during pregnancy. The morphogenesis of endometrial transformation is represented by clearly coordinated hormone-receptor interactions via immunological, angiogenic, and apoptotic factors that are necessary for pregnancy development. The pathology of morphogenesis can cause implantation disorders and early reproductive losses, highlighting the medical and social relevance of this issue.

The aim of this review was to analyze the literature data on the morphogenesis of endometrial transformation in the first trimester of pregnancy. Open access full-text publications from the PubMed and eLibrary databases, as well as Russian relevant journals from 1999 to 2021 were used for the analysis.

The morphogenesis of endometrial transformation in the first trimester of pregnancy is determined by cyclic endometrial transformation adequacy and the optimal endometrium-embryo interaction under the influence of many factors. The complex approach in evaluation of multiple links in the morphogenesis of decidual transformation of the endometrium (steroidogenesis, immunogenesis, angiogenesis, and apoptosis) will reveal molecular mechanisms of pregnancy termination due to altered decidual membrane formation.

The fundamental value of molecular mechanisms underlying endometrial transformation in understanding the pathogenesis of reproductive failures dictates the necessity of endometrial transformation investigation under conditions of reprogramming and remodeling during pregnancy.

About the authors

Tatiana G. Tral

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Darya D. Kruglova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: das5188@mail.ru
Russian Federation, Saint Petersburg

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: gulyatolibova@yandex.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825

MD, Dr. Sci. (Med)

Russian Federation, Saint Petersburg

References

  1. Frolova NI, Belokrinitskaya TE. Epigenetic factors and molecular markers of the risk of early pregnancy loss. Gynecology. 2019;21(3):9–16. (In Russ.) doi: 10.26442/20795696.2019.4.190523
  2. Kushubekova AK, Samigullina AE, Boobekova AA. Non-care of pregnancy: histological study of cerebrates from the cavity of the uterus. International Journal of Applied and Fundamental Research. 2019;(5):66–71. (In Russ.) doi: 10.17513/mjpfi.12740
  3. Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–587. doi: 10.1093/humrep/dey021
  4. Tral TG, Tolibova GK, Serdiukov SV, et al. Morpho-functional evaluation of the causes of stilled pregnancy in the first trimester. Journal of Obstetrics and Women’s Diseases. 2013;62(3):83–87. (In Russ.) doi: 10.17816/JOWD62383-87
  5. Shaulov T, Sierra S, Sylvestre C. Recurrent implantation failure in IVF: a canadian fertility and andrology society clinical practice guideline. Reprod Biomed Online. 2020;41(5):819–833. doi: 10.1016/j.rbmo.2020.08.007
  6. Ticconi C, Pietropolli A, Di Simone N, et al. Endometrial immune dysfunction in recurrent pregnancy loss. Int J Mol Sci. 2019;2(21). doi: 10.3390/ijms20215332
  7. Farrahova KL. The course of pregnancy and labour in primipara or senior repoductie age. Smolenskiy meditsinskiy al’manakh. 2018;(2):146–147. (In Russ.)
  8. Mikhaleva LM, Boltovskaya MN, Mikhalev SA, et al. Endometrial dysfunction caused by chronic endometritis: сlinical and morphological aspects. Arkhiv Patologii. 2017;79(6):22-29. (In Russ.) doi: 10.17116/patol201779622-29
  9. Tapilskaya NI, Budilovskaya OV, Krysanova AA, et al. Microbiota of the endometrium of women with chronic endometritis and idiopathic infertility. Obstetrics and gynecology. 2020;(4):72–81. (In Russ.) doi: 10.18565/aig.2020.4.72-81
  10. Patel B, Elguero S, Thakore S, et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21:155–173. doi: 10.1093/humupd/dmu056
  11. Tolibova GKh. Endometrial’naya disfunktsiya u zhenshchin s besplodiem patogeneticheskie determinanty i kliniko-morfologicheskaya diagnostika. [dissertation]. Saint Petersburg; 2018. (In Russ.) [cited 2023 Jul 3]. Available from: https://ott.ru/files/news/pg/2018_tolibova/dissertatsiia_tolibovoy.pdf
  12. Tral TG, Tolibova GH. Morphological and immunohistochemical features of non-developing pregnancy of the first trimester. Journal of Obstetrics and Women’s Diseases. 2014;63(40):60–67. (In Russ.) doi: 10.17816/JOWD63460-68
  13. Milne SA, Henderson TA, Kelly RW, et al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J Clin Endocrinol Metab. 2005;90(7):4315–4321. doi: 10.1210/jc.2004-2338
  14. Early pregnancy. Ed. by V.E. Radzinsky, A.A. Orazmuradova. Moscow: Status Praesens; 2009. (In Russ.)
  15. Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reprod Med Biol. 2018;(17):220–227. doi: 10.1002/rmb2.12088
  16. Mori M, Bogdan A, Balassa T, et al. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol. 2016;38(6):635–649. doi: 10.1007/s00281-016-0574-0
  17. Coulam C. What about superfertility, decidualization, and natural selection? J Assist Reprod Genet. 2016;(33):577–580. doi: 10.1007/s10815-016-0658-8
  18. Chen GT, Getsios S, MacCalman CD. Cadherin-11 is a hormonally regulated cellular marker of decidualization in human endometrial stromal cells. Mol Reprod Dev. 1999;52(2):158–165. doi: 10.1002/(SICI)1098-2795(199902)52:2<158::AID-MRD6>3.0.CO;2-3
  19. Sternberg AK, Buck VU, Classen-Linke I, et al. How mechanical forces change the human endometrium during the menstrual cycle in preparation for embryo implantation. Cells. 2021;10(8). doi: 10.3390/cells10082008
  20. Vinketova K, Mourdjeva M, Oreshkova T. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J Pregnancy. 2016;(2016). doi: 10.1155/2016/8689436
  21. Ng SW. Norwitz GA, Pavlicev M, et al. Endometrial decidualization: the primary driver of pregnancy health. Int J Mol Sci. 2020;2(11). doi: 10.3390/ijms21114092
  22. Nakagawa K, Kwak-Kim J, Ota K, et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. Am J Reprod Immunol. 2015;(73):353–361. DOI: DOI.ORG/10.1111/aji.12338
  23. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019; 11;4(31). doi: 10.1126/sciimmunol.aat6114
  24. Salker MS. Nautiyal J, Steel JH, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One. 2012;7(12). doi: 10.1371/journal.pone.0052252
  25. Santos ED, Moindjie H, Sérazin V, et al. Preimplantation factor modulates trophoblastic invasion through the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol. 202;19(1). doi: 10.1186/s12958-021-00774-5
  26. Balassa T, Berta G, Jakab L, et al. The effect of the Progesterone-Induced Blocking Factor (PIBF) on E-cadherin expression, cell motility and invasion of primary tumour cell lines. J Reprod Immunol. 2018;(125):8–15. doi: 10.1016/j.jri.2017.10.047
  27. Mulac-Jericevic B, Sucurovic S, Gulic T, et al. The involvement of the progesterone receptor in PIBF and Gal-1 expression in the mouse endometrium. Am J Reprod Immunol. 2019;(81). doi: 10.1111/aji.13104
  28. Szekeres-Bartho J. The role of progesteronein feto-maternal immunological cross talk. Med Princ Pract. 2018;27(4):301–307. doi: 10.1159/000491576
  29. Quinn KE, Ashley AK, Reynolds LP, et al. Activation of the CXCL12/CXCR4 signaling axis may drive vascularization of the ovine placenta. Domest Anim Endocrinol 2014;(47):11–21. doi: 10.1016/j.domaniend.2013.12.004
  30. Lu J, Zhou WH, Ren L, et al. CXCR4, CXCR7 and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Exp Mol Pathol. 2016;100(1):184–191. doi: 10.1016/j.yexmp.2015.12.013
  31. Park DW, Lee HJ, Park CW, et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63(2):173–180. doi: 10.1111/j.1600-0897.2009.00777.x
  32. Windsperger K, Dekan S, Pils S, et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod (Oxford, England). 2017;32(6):1208–1217. doi: 10.1093/humrep/dex058
  33. Jiang S, Du L, Liu J, et al. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro. Stem Cell Res Ther. 2021;12(1). doi: 10.1186/s13287-021-02192-1
  34. Kuo CY, Shevchuk M, Opfermann J, et al. Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol Bioeng. 2019;(16):181–192. doi: 10.1002/bit.26850
  35. Moser G, Windsperger K, Pollheimer J, et al. Human trophoblast invasion: new and unexpected routes and functions. Histochem Cell Biol. 2018;150(4):361–370. doi: 10.1007/s00418-018-1699-0
  36. Huang Q, Ding J, Gong M, et al. Effect of miR-30e regulating NK cell activities on immune tolerance of maternal-fetal interface by targeting PRF1. Biomed Pharmacother. 2019;(109):1478–1487. doi: 10.1016/j.biopha.2018.09.172
  37. Chen X, Liu Y, Cheung WC, et al. Increased expression of angiogenic cytokines in CD56+ uterine natural killer cells from women with recurrent miscarriage. Cytokine. 2018;(110):272–276. doi: 10.1016/j.cyto.2018.01.013
  38. Moser G, Weiss G, Sundl M, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147(3):353–366. doi: 10.1007/s00418-016-1509-5
  39. Huhn O, Zhao X, Esposito L, et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? Front Immunol. 2021;21(12). doi: 10.3389/fimmu.2021.607669
  40. Huppertz B, Weiss G, Moser G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J Reprod Immunol. 2014;(101–102):74–79. doi: 10.1016/j.jri.2013.04.003
  41. Burton GJ, Jauniaux E. Placement in the human and higher primate. Adv Anat Embryol Cell Biol. 2021;234:223–254. doi: 10.1007/978-3-030-77360-1_11
  42. Hussain T, Murtaza G, Metwally E, et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021;(2021). doi: 10.1155/2021/9962860
  43. Sidney LE, Branch MJ, Dunphy SE, et al. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32(6):1380–1389. doi: 10.1002/stem.1661
  44. Plaisier M, Dennert I, Rost E, et al. Decidual vascularization and the expression of angiogenic growth factors and proteases in first trimester spontaneous abortions. Hum Reprod. 2009;24(1):185–197. doi: 10.1093/humrep/den296
  45. Matsumoto L, Hirota Y, Saito-Fujita T, et al. HIF2a in the uterine stroma permits embryo invasion and luminal epithelium detachment. J Clin Investig. 2018;(128):3186–3197. doi: 10.1172/JCI98931
  46. Babawale MO, Mobberley MA, Ryder TA, et al. Ultrastructure of the early human feto-maternal interface co-cultured in vitro. Hum Reprod. 2002;(17):1351–1357. doi: 10.1093/humrep/17.5.1351
  47. Riddell MR, Winkler-Lowen B, Guilbert LJ. The contribution of apoptosis-inducing factor (AIF) to villous trophoblast differentiation. Placenta. 2012;33(2):88–93. doi: 10.1016/j.placenta.2011.11.008
  48. Hempstock J, Jauniaux E, Greenwold N, et al. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol. 2003;(34). doi: 10.1016/j.humpath.2003.08.006
  49. He H, Zhang H, Li Q, et al. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology. 2020;(156):46–58. doi: 10.1016/j.theriogenology.2020.06.022
  50. Ramos-Ibeas P, Heras S, Gómez-Redondo I, et al. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod. 2019;(86):1292–1306. doi: 10.1002/mrd.23119
  51. Adamyan LV, Artymuk NV, Belokrinitskaya TE, et al. Vykidysh v rannie sroki beremennosti: diagnostika i taktika vedeniya. Klinicheskie rekomendatsii (protokol lecheniya). 2016. (In Russ.) [cited 2023 Jun 4.]. Available from: http://uklcrb.ru/doc/010419_1504.pdf
  52. Tral TG, Tolibova GKh. Morphological variants of decidual endometrial transformation in missed abortion after in vitro fertilization. Clinical and Experimental Morphology. 2021;10(S4):42–51. (In Russ.) doi: 10.31088/CEM2021.10.S4.42-51

Copyright (c) 2023 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies