Predictors of late complications in pregnant women with arterial hypertension

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Arterial hypertension occurs in 8–29% of pregnant women and is a common form of endothelial dysfunction during gestation. In recent decades, the prevalence of arterial hypertension has increased several times largely due to the increasing maternal age of primiparous women and the increased incidence of obesity, diabetes mellitus, and carbohydrate metabolism disorders.

The aim of this study was to formulate the management tactics for pregnant patients with high blood pressure, based on the current understanding of the causes and mechanisms of the disease and the ability to influence the molecular links of pathogenesis, and to identify possible markers for predicting the progression of endothelial dysfunction in pregnant women with arterial hypertension. This review, based on the literature, raises the problem of modern diagnosis of arterial hypertension in pregnancy. We discuss the consequences of late initiation of the therapy and evaluate possible complications.

The severity of arterial hypertension is assessed differently in pregnant and non-pregnant women, according to current clinical guidelines. Thus, chronic arterial hypertension in pregnant women corresponds to grade II arterial hypertension in non-pregnant women, according to the American Heart Association and American College of Cardiology classification. Both untimely diagnosis and delayed or inadequate treatment result in adverse obstetric outcomes. Recent studies indicate the ability of earlier antihypertensive therapy (already at stage I according to the American Heart Association and American College of Cardiology classification) to reduce maternal and fetal adverse effects and prolong pregnancy. The CHAP 2022 study showed that using a blood pressure treatment threshold of 140/90 mmHg for pregnant women with chronic arterial hypertension provides better outcomes compared to treatment at higher numbers. Despite early initiation of therapy, some patients with elevated blood pressure subsequently develop thrombotic and gestational complications associated with endothelial dysfunction. There is an obvious need to introduce early preclinical diagnostic methods that would narrow the risk group and prevent late complications. The authors’ consensus on personalization of acetylsalicylic acid intake has emerged. The review analyzes the potential mechanisms of aspirin resistance, as well as the influence of genetic (the PTGS1, PTGS2, ITGB3, ITGA2, GP6, GP1BA, P2RY1, P2RY12 genes, other genes, and associated microRNA) and biochemical markers (11-dehydrotromboxane B2), which presumably may have prognostic value and applicability in clinical practice.

Our current understanding of the problem of diagnosis and early treatment of arterial hypertension in pregnancy can reduce the number of complications. The problem of predicting the development of endothelial dysfunction remains unresolved to the end. Active implementation of the studied markers into practice requires a further more detailed study of this area and the optimization of research design.

About the authors

Vladislava V. Khalenko

Saint Petersburg State University

Author for correspondence.
Email: vkhalenko@gmail.com
ORCID iD: 0000-0001-5313-2259
SPIN-code: 9694-3758
Russian Federation, Saint Petersburg

Olga N. Arzhanova

Saint Petersburg State University; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: arjanova_olga@mail.ru
ORCID iD: 0000-0003-3059-9811
SPIN-code: 7910-6039
ResearcherId: G-6895-2015

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Elena V. Mozgovaya

Saint Petersburg State University; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: elmozg@mail.ru
ORCID iD: 0000-0002-6460-6816
SPIN-code: 5622-5674
ResearcherId: H-9445-2017

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Ananth CV, Duzyj CM, Yadava S, et al. Changes in the prevalence of chronic hypertension in pregnancy, United States, 1970 to 2010. Hypertension. 2019;74(5):1089–1095. doi: 10.1161/HYPERTENSIONAHA.119.12968
  2. Lecarpentier E, Tsatsaris V, Goffinet F, et al. Risk factors of superimposed preeclampsia in women with essential chronic hypertension treated before pregnancy. PLoS One. 2013;8(5). doi: 10.1371/journal.pone.0062140
  3. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins–Obstetrics. ACOG Practice Bulletin No. 203: Chronic hypertension in pregnancy. Obstet Gynecol. 2019;133(1):e26–e50. doi: 10.1097/AOG.0000000000003020
  4. Rossiiskoe obshchestvo akusherov-ginekologov (ROAG), Assotsiatsiya anesteziologov-reanimatologov (AAR), Assotsiatsiya akusherskikh anesteziologov-reanimatologov (AAAR). Preeklampsiya. Eklampsiya. Oteki, proteinuriya i gipertenzivnye rasstroistva vo vremya beremennosti, v rodakh i poslerodovom periode: klinicheskie rekomendatsii. 2021. (In Russ.). [cited 2022 Sept 15]. Available from: https://roag-portal.ru/recommendations_obstetrics
  5. Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens. 2014;4(2):97–104. doi: 10.1016/j.preghy.2014.02.001
  6. Petrov YuA, Chebotareva YuYu, Ovsyannikov VG, et al. Modern aspects of chronic hypertension during pregnancy. Medical Herald of the South of Russia. 2015;(3):5–8. (In Russ.). doi: 10.21886/2219-8075-2015-3-5-8
  7. Sun Y, Yang YL, Yang HX. Maternal and perinatal prognosis of pregnancy with chronic hypertension and analysis of associated factors. Zhonghua Fu Chan Ke Za Zhi. 2007;42(7):434–437.
  8. Kobalava ZD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3). (In Russ.). doi: 10.15829/1560-4071-2020-3-3786
  9. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/American Heart Association Task Force on Clinical Practice. Hypertension. 2018;71(6):1269–1324. doi: 10.1161/HYP.0000000000000066
  10. Greenberg VR, Silasi M, Lundsberg LS, et al. Perinatal outcomes in women with elevated blood pressure and stage 1 hypertension. Am J Obstet Gynecol. 2021;224(5):521.e1–521.e11. doi: 10.1016/j.ajog.2020.10.049
  11. Darwin KC, Federspiel JJ, Schuh BL, et al. ACC-AHA diagnostic criteria for hypertension in pregnancy identifies patients at intermediate risk of adverse outcomes. Am J Perinatol. 2021;38(1):e249–e255. doi: 10.1055/s-0040-1709465
  12. Bateman BT, Bansil P, Hernandez-Diaz S, et al. Prevalence, trends, and outcomes of chronic hypertension: a nationwide sample of delivery admissions. Am J Obstet Gynecol. 2012;206(2):134.e1–134.e1348. doi: 10.1016/j.ajog.2011.10.878
  13. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–1131. doi: 10.1097/01.AOG.0000437382.03963.88
  14. Bramham K, Parnell B, Nelson-Piercy C, et al. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ. 2014;348. doi: 10.1136/bmj.g2301
  15. Ye C, Ruan Y, Zou L, et al. The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS One. 2014;9(6). doi: 10.1371/journal.pone.0100180
  16. Panaitescu AM, Syngelaki A, Prodan N, et al. Chronic hypertension and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2017;50(2):228–235. doi: 10.1002/uog.17493
  17. Sibai BM, Anderson GD. Pregnancy outcome of intensive therapy in severe hypertension in first trimester. Obstet Gynecol. 1986;67(4):517–522.
  18. Ramakrishnan A, Lee LJ, Mitchell LE, et al. Maternal hypertension during pregnancy and the risk of congenital heart defects in offspring: a systematic review and meta-analysis. Pediatr Cardiol. 2015;36:1442–1451. doi: 10.1007/s00246-015-1182-9
  19. Ilic A, Ilic DJ, Tadic S, et al. Influence of non-dipping pattern of blood pressure in gestational hypertension on maternal cardiac function, hemodynamics and intrauterine growth restriction. Pregnancy Hypertens. 2017;10:34–41. doi: 10.1016/j.preghy.2017.05.003
  20. Sizova OV, Rad’kov OV, Kolbasnikov SV, et al. Chronic hypertension in pregnant women: prognosis and prevention of pregnancy complications; antihypertensive therapy policy. Russian Bulletin of Obstetrician-Gynecologist. 2018;18(6):25-30. (In Russ.). doi: 10.17116/rosakush20181806125
  21. Chernyavina AI, Surovtseva MV. Impact of polymorphism of cardiovascular risk genes on arterial remodelling development depending on presence of systemic hypertension. Russ J Cardiol. 2018;23(1):43–50. doi: 10.15829/1560-4071-2018-1-43-50
  22. Holmes L, Lim A, Comeaux CR, et al. DNA methylation of candidate genes (ACE II, IFN-γ, AGTR 1, CKG, ADD1, SCNN1B and TLR2) in essential hypertension: a systematic review and quantitative evidence synthesis. Int J Environ Res Public Health. 2019;16(23). doi: 10.3390/ijerph16234829
  23. Stryuk RI, Bunin YuA, Gur’eva VM, et al. Diagnosis and treatment of cardiovascular diseases during pregnancy 2018. National guidelines. Russ J Cardiol. 2018,3(155):91–134 (In Russ.). doi: 10.15829/1560-4071-2018-3-91-134
  24. Chulkov VS, Vereina NK, Sinitsyn SP, et al. Evaluation of an interrelation of target blood pressure achievement and complications and outcomes of pregnancy in arterial hypertension. Cardiovascular Therapy and Prevention. 2014;13(6):23–27. (In Russ.). doi: 10.15829/1728-8800-2014-6-23-27
  25. Abalos E, Duley L, Steyn DW, et al. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. 2007;(1). doi: 10.1002/14651858.CD002252.pub2
  26. Jiang N, Liu Q, Liu L, et al. The effect of calcium channel blockers on prevention of preeclampsia in pregnant women with chronic hypertension. Clin Exp Obstet Gynecol. 2015;42(1):79–81.
  27. Chazova I.E., Zhernakova Yu.V. on behalf of the experts. Clinical guidelines. Diagnosis and treatment of arterial hypertension. Systemic Hypertension. 2019;16(1):6–31. doi: 10.26442/2075082X.2019.1.190179
  28. Magee LA, von Dadelszen P, Singer J, et al. The CHIPS randomized controlled trial (control of hypertension in pregnancy study): is severe hypertension just an elevated blood pressure? Hypertension. 2016;68(5):1153–1159. doi: 10.1161/HYPERTENSIONAHA.116.07862
  29. Аhn HK, Nava-Ocampo AA, Han JY, et al. Exposure to amlodipine in the first trimester of pregnancy and during breastfeeding. Hypertens Pregnancy. 2007;26(2):179–187. doi: 10.1080/10641950701204554
  30. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22.
  31. De Swiet M. Maternal blood pressure and birthweight. Lancet. 2000;355(9198):81–82. doi: 10.1016/s0140-6736(99)00288-3
  32. Kernaghan D, Duncan AC, McKay GA. Hypertension in pregnancy: a review of therapeutic options. Obstet Med. 2012;5(2):44–49. doi: 10.1258/om.2011.110061
  33. Braunthal S, Brateanu A. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Med. 2019;7. doi: 10.1177/2050312119843700
  34. Chistiakova GN, Remizova II, Bychkova SV, et al. Features of the functional activity of endothelium in pregnant women with hypertensive disorders and their newborn children. Russian Journal of Human Reproduction. 2020;26(1):95-103. (In Russ.). doi: 10.17116/repro20202601195
  35. Cui Y, Zhu B, Zheng F. Low-dose aspirin at ≤16 weeks of gestation for preventing preeclampsia and its maternal and neonatal adverse outcomes: a systematic review and meta-analysis. Exp Ther Med. 2018;15(5):4361–4369. doi: 10.3892/etm.2018.5972
  36. Roberge S, Sibai B, McCaw-Binns A, et al. Low-dose aspirin in early gestation for prevention of preeclampsia and small-for-gestational-age neonates: meta-analysis of large randomized trials. Am J Perinatol. 2016;33(8):781–785. doi: 10.1055/s-0036-1572495
  37. Awtry EH, Loscalzo J. Aspirin. Circulation. 2000;101(10):1206–1218. doi: 10.1161/01.cir.101.10.1206
  38. Dubrovina SO, Muzalchanova YuS, Vasil’eva VV. Early prediction of preeclampsia (a review). Russian Journal of Human Reproduction. 2018;24(3):67-73. (In Russ.). doi: 10.17116/repro201824367
  39. Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet. 2006;367(9510):606–617. doi: 10.1016/S0140-6736(06)68040-9
  40. Lukianets KYu, Pchelin IYu. Acetylsalicylic acid resistance: risk factors, mechanisms, diagnostic tests. Juvenis Scientia. 2020;6(2):16–34. (In Russ.). doi: 10.32415/jscientia_2020_6_2_16-34
  41. Jia W, Jia Q, Zhang Y, et al. Association between insulin resistance and aspirin or clopidogrel resistance in Chinese patients with recent ischemic stroke/TIA. Neurol Res. 2021;43(5):406–411. doi: 10.1080/01616412.2020.1866371
  42. Ferreira M, Freitas-Silva M, Assis J., et al. The emergent phenomenon of aspirin resistance: insights from genetic association studies. Pharmacogenomics. 2020;21(2):125–140. doi: 10.2217/pgs-2019-0133
  43. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8(12). doi: 10.1371/journal.pcbi.1002822
  44. Maree AO, Curtin RJ, Chubb A, et al. Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J Thromb Haemost. 2005;3(10):2340–2345. doi: 10.1111/j.1538-7836.2005.01555.x
  45. Sharma V, Kaul S, Al-Hazzani A, et al. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis. 2013;35(1):95–99. doi: 10.1007/s11239-012-0777-8
  46. Cooke GE, Liu-Stratton Y, Ferketich AK, et al. Effect of platelet antigen polymorphism on platelet inhibition by aspirin, clopidogrel, or their combination. J Am Coll Cardiol. 2006;47(3):541–546. doi: 10.1016/j.jacc.2005.09.034
  47. Du G, Lin Q, Wang J. A brief review on the mechanisms of aspirin resistance. Int J Cardiol. 2016;220:21–26. doi: 10.1016/j.ijcard.2016.06.104
  48. Luo GP, Ni B, Yang X, et al. von Willebrand factor: more than a regulator of hemostasis and thrombosis. Acta Haematol. 2012;128(3):158–169. doi: 10.1159/000339426
  49. Würtz M, Lordkipanidzé M, Grove EL. Pharmacogenomics in cardiovascular disease: focus on aspirin and ADP receptor antagonists. J Thromb Haemost. 2013;11(9):1627–1639. doi: 10.1111/jth.12318
  50. Lordkipanidzé M, Diodati JG, Palisaitis DA, et al. Genetic determinants of response to aspirin: appraisal of 4 candidate genes. Thromb Res. 2011;128(1):47–53. doi: 10.1016/j.thromres.2011.02.019
  51. Patent RF na izobretenie 2015113953/15 / 16.04.2015. Bjul. No. 32. Chukaeva II, Khachirova AI, Akhmatova FD, et al. Sposob prognozirovaniya aspirinoreistentnosti. (In Russ.). [cited 11.09.2022]. Available from: https://patenton.ru/patent/RU2602664C1.pdf
  52. Eyileten C, Wicik Z, De Rosa S, et al. MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke — a comprehensive review and bioinformatic analysis. Cells. 2018;7(12). doi: 10.3390/cells7120249
  53. Czajka P, Fitas A, Jakubik D, et al. MicroRNA as potential biomarkers of platelet function on antiplatelet therapy: a review. Front Physiol. 2021;12. doi: 10.3389/fphys.2021.652579
  54. Liu WW, Wang H, Chen XH, et al. miR-34b-3p May promote antiplatelet efficiency of aspirin by inhibiting thromboxane synthase expression. Thromb Haemost. 2019;119(9):1451–1460. doi: 10.1055/s-0039-1692681
  55. Osman A, Fälker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets. 2011;22(6):433–441. doi: 10.3109/09537104.2011.560305
  56. Haneklaus M, Gerlic M, O’Neill LA, et al. miR-223: infection, inflammation and cancer. J Intern Med. 2013;274(3):215–226. doi: 10.1111/joim.12099
  57. de Boer HC, van Solingen C, Prins J, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34(44):3451–3457. doi: 10.1093/eurheartj/eht007
  58. Kok MG, Mandolini C, Moerland PD, et al. Low miR-19b-1-5p expression in isolated platelets after aspirin use is related to aspirin insensitivity. Int J Cardiol. 2016;203:262–263. doi: 10.1016/j.ijcard.2015.10.098
  59. Zufferey A, Ibberson M, Reny JL, et al. New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach. Hum Genet. 2016;135(4):403–414. doi: 10.1007/s00439-016-1642-1
  60. Binderup HG, Houlind K, Madsen JS, et al. Aspirin resistance may be identified by miR-92a in plasma combined with platelet distribution width. Clin Biochem. 2016;49(15):1167–1172. doi: 10.1016/j.clinbiochem.2016.04.017

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Khalenko V.V., Arzhanova O.N., Mozgovaya E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies