Mechanisms of bacterial multiresistance to antibiotics

Cover Page

Cite item

Full Text

Abstract

Multiple drug resistance (MDR) to widening range of antibiotics emerging in increasing variety of pathogenic bacteria is a serious threat to the health of mankind nowadays. This is partially due to an uncontrolled usage of antibiotics not only in clinical practice, but also in various branches of agriculture. MDR is affected by two mechanisms: (1) accumulation of resistance genes as a result of intensive selection caused by antibiotics, and (2) active horizontal transfer of resistance genes. To unveil the reasons of bacterial multiresistance to antibiotics, it is necessary to understand the mechanisms of antibiotics action as well as the ways how either resistance to certain antibiotics emerge or resistance genes accumulate and transfer among bacterial strains. Current review is devoted to all these problems.

About the authors

Olga M. Zemlyanko

Saint Petersburg State University; Saint Petersburg Scientific Center RAS

Email: olga_zemlyanko@mail.ru

Junior Researcher, Department of Genetics and Biotechnology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034; 5, Universitetskaya Nab., St.Petersburg, 199034

Tatyana M. Rogoza

Saint Petersburg State University; St. Petersburg branch of Vavilov Institute of General Genetics

Email: taniuxa@bk.ru

Senior Lecturer, Department of Genetics and Biotechnology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034; Saint-Petersburg

Galina A. Zhouravleva

Saint Petersburg State University

Author for correspondence.
Email: zhouravleva@rambler.ru

Sci. Doctor, Professor, Department of Genetics and Biotechnology Laboratory of Amyloid Biology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Равин Н.В. Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции. – 2013. – Т. 17. – № 4–2. – С. 972–984. [Ravin NV, Shestakov SV. The genome of prokaryotes. Vavilov journal of genetics and breeding. 2013;17(4-2):972-984. (In Russ.)]
  2. Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol. 2012;3:18. doi: 10.3389/fmicb.2012.00018.
  3. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64 Suppl 1: i3-10. doi: 10.1093/jac/dkp256.
  4. Chang HH, Cohen T, Grad YH, et al. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev. 2015;79(1):101-16. doi: 10.1128/MMBR.00039-14.
  5. Ланчини Д., Паренти Ф. Антибиотики. – М.: Мир, 1985. [Lancini G, Parenti F. Antibiotics. Moscow: Mir; 1985. (In Russ.)]
  6. Duax WL, Griffin JF, Langs DA, et al. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics. Biopolymers. 1996;40(1):141-55. doi: 10.1002/(sici)1097-0282(1996)40:1<141::aid-bip6>3.0.co;2-w.
  7. Tassoni R, van der Aart LT, Ubbink M, et al. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun. 2017;483(1):122-128. doi: 10.1016/j.bbrc.2016.12.183.
  8. Kang H-K, Park Y. Glycopeptide Antibiotics: Structure and Mechanisms of Action. J Bacteriol Virol. 2015;45(2):67. doi: 10.4167/jbv.2015.45.2.67.
  9. Santoro A, Cappello AR, Madeo M, et al. Interaction of fosfomycin with the glycerol 3-phosphate transporter of Escherichia coli. Biochim Biophys Acta. 2011;1810(12):1323-1329. doi: 10.1016/j.bbagen.2011.07.006.
  10. Konaklieva MI. Molecular Targets of beta-Lactam-Based Antimicrobials: Beyond the Usual Suspects. Antibiotics (Basel). 2014;3(2):128-142. doi: 10.3390/antibiotics3020128.
  11. Velkov T, Roberts KD, Nation RL, et al. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711-724. doi: 10.2217/fmb.13.39.
  12. Iacobazzi RM, Annese C, Azzariti A, et al. Antitumor potential of conjugable valinomycins bearing hydroxyl sites: in vitro studies. ACS Med Chem Lett. 2013;4(12):1189-1192. doi: 10.1021/ml400300q.
  13. Kelkar DA, Chattopadhyay A. The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta. 2007;1768(9):2011-2025. doi: 10.1016/j.bbamem.2007.05.011.
  14. Fang P, Yu X, Jeong SJ, et al. Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat Commun. 2015;6:6402. doi: 10.1038/ncomms7402.
  15. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrob Agents Chemother. 2000;44(12):3249-3256. doi: 10.1128/aac.44.12.3249-3256.2000.
  16. Vila-Sanjurjo A, Lu Y, Aragonez JL, et al. Modulation of 16S rRNA function by ribosomal protein S12. Biochim Biophys Acta. 2007;1769(7-8):462-471. doi: 10.1016/j.bbaexp.2007.04.004.
  17. Nguyen F, Starosta AL, Arenz S, et al. Tetracycline antibiotics and resistance mechanisms. Biol Chem. 2014;395(5):559-575. doi: 10.1515/hsz-2013-0292.
  18. Liu J, Xu Y, Stoleru D, Salic A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc Natl Acad Sci USA. 2012;109(2):413-8. doi: 10.1073/pnas.1111561108.
  19. Bulkley D, Innis CA, Blaha G, Steitz TA. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci USA. 2010;107(40):17158-17163. doi: 10.1073/pnas.1008685107.
  20. Thompson J, O’Connor M, Mills JA, Dahlberg AE. The Protein Synthesis Inhibitors, Oxazolidinones and Chloramphenicol, Cause Extensive Translational Inaccuracy in vivo. J Mol Biol. 2002;322(2):273-279. doi: 10.1016/s0022-2836(02)00784-2.
  21. Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol. 2017;106(1):22-34. doi: 10.1111/mmi.13750.
  22. Gao YG, Selmer M, Dunham CM, et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science. 2009;326(5953):694-699. doi: 10.1126/science.1179709.
  23. Denel-Bobrowska M, Lukawska M, Bukowska B, et al. Molecular mechanism of action of oxazolinoanthracyclines in cells derived from human solid tumors. Part 2. Toxicol In Vitro. 2018;46:323-334. doi: 10.1016/j.tiv.2017.10.021.
  24. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;2(9):575-579. doi: 10.1016/1074-5521(95)90120-5.
  25. Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci USA.1985;82(16):5328-5331. doi: 10.1073/pnas.82.16.5328.
  26. Ma C, Yang X, Lewis PJ. Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev. 2016;80(1):139-160. doi: 10.1128/MMBR.00055-15.
  27. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565-1574. doi: 10.1021/bi5000564.
  28. van Duijkeren E, Schink AK, Roberts MC, et al. Mechanisms of Bacterial Resistance to Antimicrobial Agents. Microbiol Spectr. 2018;6(1). doi: 10.1128/microbiolspec.ARBA-0019-2017.
  29. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-146. doi: 10.1146/annurev.biochem.78.082907.145923.
  30. Kumar S, Varela M. Molecular mechanisms of bacterial resistance to antimicrobial agents. Microbial pathogens and strategies for combating them: science, technology and education. Ed by A. Méndez-Vilas. Badajoz: Formatex Research Center; 2013. P. 522-534.
  31. Bush K. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001;32(7):1085-1089. doi: 10.1086/319610.
  32. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-71. doi: 10.1016/j.drup.2010.08.003.
  33. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39(3):577-585. doi: 10.1128/aac.39.3.577.
  34. Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133-148. doi: 10.1016/j.drup.2012.05.001.
  35. Gudeta DD, Moodley A, Bortolaia V, Guardabassi L. vanO, a new glycopeptide resistance operon in environmental Rhodococcus equi isolates. Antimicrob Agents Chemother. 2014;58(3):1768-1770. doi: 10.1128/AAC.01880-13.
  36. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance. Antimicrob Agents Chemother. 2003;47(12):3675-3681. doi: 10.1128/aac.47.12.3675-3681.2003.
  37. Cohen KA, Bishai WR, Pym AS. Molecular Basis of Drug Resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2014;2(3). doi: 10.1128/microbiolspec.MGM2-0036-2013.
  38. Lopez M, Kadlec K, Schwarz S, Torres C. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microb Drug Resist. 2012;18(1):13-18. doi: 10.1089/mdr.2011.0073.
  39. Lopez M, Kadlec K, Schwarz S, Torres C. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microb Drug Resist. 2012;18(1):13-18. doi: 10.1089/mdr.2011.0073.
  40. Simonet V, Mallea M, Pages JM. Substitutions in the Eyelet Region Disrupt Cefepime Diffusion through the Escherichia coli OmpF Channel. Antimicrob Agents Chemother. 2000;44(2):311-315. doi: 10.1128/aac.44.2.311-315.2000.
  41. Wolter DJ, Hanson ND, Lister PD. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett. 2004;236(1):137-143. doi: 10.1016/j.femsle.2004.05.039.
  42. Andersen JL, He GX, Kakarla P, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015;12(2):1487-1547. doi: 10.3390/ijerph120201487.
  43. Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie. 2005;87(12):1137-1147. doi: 10.1016/j.biochi.2005.04.012.
  44. Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett. 1999;170(1):251-256. doi: 10.1111/j.1574-6968.1999.tb13381.x.
  45. Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011;6(3): e17549. doi: 10.1371/journal.pone.0017549.
  46. Ito T, Okuma K, Ma XX, et al. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat. 2003;6(1):
  47. -52. doi: 10.1016/s1368-7646(03)00003-7.
  48. Giebelhaus LA, Frost L, Lanka E, et al. The Tra2 core of the IncP(alpha) plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J Bacteriol. 1996;178(21):6378-6381. doi: 10.1128/jb.178.21.6378-6381.1996.
  49. Waters CM, Dunny GM. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol. 2001;183(19):5659-5667. doi: 10.1128/JB.183.19.5659-5667.2001.
  50. Flannagan SE, Clewell DB. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol Microbiol. 2002;44(3):803-817. doi: 10.1046/j.1365-2958.2002.02922.x.
  51. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711-721. doi: 10.1038/nrmicro1234.
  52. Johnsborg O, Eldholm V, Havarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol. 2007;158(10):767-778. doi: 10.1016/j.resmic.2007.09.004.
  53. Cohan FM, Roberts MS, King EC. The Potential for Genetic Exchange by Transformation within a Natural Population of Bacillus Subtilis. Evolution. 1991;45(6):1393-1421. doi: 10.1111/j.1558-5646.1991.tb02644.x.
  54. Slager J, Kjos M, Attaiech L, Veening JW. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell. 2014;157(2):395-406. doi: 10.1016/j.cell.2014.01.068.
  55. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563-602.
  56. Boyd EF, Hill CW, Rich SM, Hartl DL. Mosaic structure of plasmids from natural populations of Esche richia coli. Genetics. 1996;143(3):1091-1100.
  57. Wilkins BM, Chilley PM, Thomas AT, Pocklington MJ. Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J Mol Biol. 1996;258(3):447-456. doi: 10.1006/jmbi.1996.0261.
  58. Becker EC, Meyer RJ. Acquisition of resistance genes by the IncQ plasmid R1162 is limited by its high copy number and lack of a partitioning mechanism. J Bacteriol. 1997;179(18):5947-5950. doi: 10.1128/jb.179.18.5947-5950.1997.
  59. Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell. 2011;144(4):590-600. doi: 10.1016/j.cell.2011.01.015.
  60. Silver L, Chandler M, de la Tour EB, Caro L. Origin and direction of replication of the drug resistance plasmid R100.1 and of a resistance transfer factor derivative in synchronized cultures. J Bacteriol. 1977;131(3):929-942.
  61. Davanger M, Evensen A. Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium. Nature. 1971;229(5286):560-561. doi: 10.1038/229560a0.
  62. Livermore DM. Antibiotic resistance in staphylococci. Int J Antimicrob Agents. 2000;16:3-10. doi: 10.1016/s0924-8579(00)00299-5.
  63. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. doi: 10.1128/MMBR.00016-10.
  64. Darmon E, Leach DR. Bacterial genome instability. Microbiol Mol Biol Rev. 2014;78(1):1-39. doi: 10.1128/MMBR.00035-13.
  65. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296-316. doi: 10.1128/MMBR.00048-05.
  66. Kaushik M, Kumar S, Kapoor RK, et al. Integrons in Enterobacteriaceae: diversity, distribution and epidemio logy. Int J Antimicrob Agents. 2018;51(2):167-176. doi: 10.1016/j.ijantimicag.2017.10.004.
  67. Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation On Demand. Microbiol Spectr. 2015;3(2): MDNA3-0019-2014. doi: 10.1128/microbiolspec.MDNA3-0019-2014.
  68. Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol. 2007;15(7):301-9. doi: 10.1016/j.tim.2007.05.004.
  69. Guerin E, Cambray G, Sanchez-Alberola N, et al. The SOS response controls integron recombination. Science. 2009;324(5930):1034. doi: 10.1126/science.1172914.
  70. Baharoglu Z, Krin E, Mazel D. Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J Bacteriol. 2012;194(7):1659-1667. doi: 10.1128/JB.05982-11.
  71. Juhas M, van der Meer JR, Gaillard M, et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews. 2009;33(2):376-393. doi: 10.1111/j.1574-6976.2008.00136.x.
  72. Llosa M, Gomis-Ruth FX, Coll M, Cruz Fdl. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol. 2002;45(1):1-8. doi: 10.1046/j.1365-2958.2002.03014.x.
  73. Delavat F, Miyazaki R, Carraro N, et al. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev. 2017;41(4):512-537. doi: 10.1093/femsre/fux008.
  74. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281. doi: 10.1111/j.1469-0691.2011.03570.x.
  75. Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J. 2015;9(4):958-967. doi: 10.1038/ismej.2014.193.
  76. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2). doi: 10.1128/microbiolspec.VMBF-0016-2015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The examples of targets of some antibiotics. Antibiotics are grouped according to the principle of action; numbers indicate the mechanisms of action of antibiotics; arrows indicate the targets of the action of antibiotics. PABA – para-aminobenzoic acid; DHF – dihydrofolate; THF – tetrahydrofolate

Download (352KB)
3. Fig. 2. Examples of drug resistance in bacteria. Antibiotics are grouped according to the principle of bacterial response; numbers mean group of resistance; lines indicate block of antibiotic action. PABA – para-aminobenzoic acid; DHF – dihydrofolate; THF – tetrahydrofolate

Download (500KB)
4. Fig. 3. Organization of integron: а – Insertion and excision of cassettes: the functional platform, composed of the integrase-encoding intI1 gene, the cassette (Pc) and integrase promoter (Pint), and the primary attI recombination site. The IntI integrase catalyzes cassette insertion and excision. Hybrid attI and attC sites are indicated. Arrows inside the cassettes indicate the direction of the open reading frame; b — expression of cassettes: cassettes of the array are represented by short arrows, expression level is reflected by the color intensity of each arrow (modified from [66])

Download (89KB)

Copyright (c) 2018 Zemlyanko O.M., Rogoza T.M., Zhouravleva G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies