Механизмы множественной устойчивости бактерий к антибиотикам

Обложка

Цитировать

Полный текст

Аннотация

Появление множественной лекарственной устойчивости (МЛУ) ко все более широкому спектру антибиотиков у все большего числа патогенных бактерий представляет на сегодняшний день серьезную угрозу здоровью человечества. Отчасти это связано с бесконтрольным использованием антибиотиков не только в клинической практике, но и в различных отраслях сельского хозяйства. МЛУ обусловлена двумя механизмами: 1) накоплением генов устойчивости в результате интенсивного отбора при действии антибиотиков и 2) активным горизонтальным переносом генов устойчивости. Для понимания причин возникновения полирезистентности бактериальных штаммов к антибиотикам необходимо знание механизмов действия антибиотиков, механизмов возникновения устойчивости к отдельным антибиотикам и механизмов накопления и передачи генов устойчивости между бактериями — всем этим проблемам и посвящен данный обзор.

Об авторах

Ольга Михайловна Землянко

Санкт-Петербургский государственный университет; Санкт-Петербургский научный центр Российской академии наук

Email: olga_zemlyanko@mail.ru

младший научный сотрудник, кафедра генетики и биотехнологии, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9; 199034, г. Санкт-Петербург, Университетская наб., 5

Татьяна Михайловна Рогоза

Санкт-Петербургский государственный университет; Санкт-Петербургский филиал Института общей генетики им. Н.И. Вавилова

Email: taniuxa@bk.ru

старший преподаватель, кафедра генетики и биотехнологии, биологический факультет

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9;  г. Санкт-Петербург

Галина Анатольевна Журавлева

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: zhouravleva@rambler.ru

д-р биол. наук, профессор, кафедра генетики и биотехнологии, биологический факультет, лаборатория биологии амилоидов

Россия, 199034, г. Санкт-Петербург, Университетская наб., д.7/9

Список литературы

  1. Равин Н.В. Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции. – 2013. – Т. 17. – № 4–2. – С. 972–984. [Ravin NV, Shestakov SV. The genome of prokaryotes. Vavilov journal of genetics and breeding. 2013;17(4-2):972-984. (In Russ.)]
  2. Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol. 2012;3:18. doi: 10.3389/fmicb.2012.00018.
  3. Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64 Suppl 1: i3-10. doi: 10.1093/jac/dkp256.
  4. Chang HH, Cohen T, Grad YH, et al. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev. 2015;79(1):101-16. doi: 10.1128/MMBR.00039-14.
  5. Ланчини Д., Паренти Ф. Антибиотики. – М.: Мир, 1985. [Lancini G, Parenti F. Antibiotics. Moscow: Mir; 1985. (In Russ.)]
  6. Duax WL, Griffin JF, Langs DA, et al. Molecular structure and mechanisms of action of cyclic and linear ion transport antibiotics. Biopolymers. 1996;40(1):141-55. doi: 10.1002/(sici)1097-0282(1996)40:1<141::aid-bip6>3.0.co;2-w.
  7. Tassoni R, van der Aart LT, Ubbink M, et al. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun. 2017;483(1):122-128. doi: 10.1016/j.bbrc.2016.12.183.
  8. Kang H-K, Park Y. Glycopeptide Antibiotics: Structure and Mechanisms of Action. J Bacteriol Virol. 2015;45(2):67. doi: 10.4167/jbv.2015.45.2.67.
  9. Santoro A, Cappello AR, Madeo M, et al. Interaction of fosfomycin with the glycerol 3-phosphate transporter of Escherichia coli. Biochim Biophys Acta. 2011;1810(12):1323-1329. doi: 10.1016/j.bbagen.2011.07.006.
  10. Konaklieva MI. Molecular Targets of beta-Lactam-Based Antimicrobials: Beyond the Usual Suspects. Antibiotics (Basel). 2014;3(2):128-142. doi: 10.3390/antibiotics3020128.
  11. Velkov T, Roberts KD, Nation RL, et al. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8(6):711-724. doi: 10.2217/fmb.13.39.
  12. Iacobazzi RM, Annese C, Azzariti A, et al. Antitumor potential of conjugable valinomycins bearing hydroxyl sites: in vitro studies. ACS Med Chem Lett. 2013;4(12):1189-1192. doi: 10.1021/ml400300q.
  13. Kelkar DA, Chattopadhyay A. The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta. 2007;1768(9):2011-2025. doi: 10.1016/j.bbamem.2007.05.011.
  14. Fang P, Yu X, Jeong SJ, et al. Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat Commun. 2015;6:6402. doi: 10.1038/ncomms7402.
  15. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrob Agents Chemother. 2000;44(12):3249-3256. doi: 10.1128/aac.44.12.3249-3256.2000.
  16. Vila-Sanjurjo A, Lu Y, Aragonez JL, et al. Modulation of 16S rRNA function by ribosomal protein S12. Biochim Biophys Acta. 2007;1769(7-8):462-471. doi: 10.1016/j.bbaexp.2007.04.004.
  17. Nguyen F, Starosta AL, Arenz S, et al. Tetracycline antibiotics and resistance mechanisms. Biol Chem. 2014;395(5):559-575. doi: 10.1515/hsz-2013-0292.
  18. Liu J, Xu Y, Stoleru D, Salic A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc Natl Acad Sci USA. 2012;109(2):413-8. doi: 10.1073/pnas.1111561108.
  19. Bulkley D, Innis CA, Blaha G, Steitz TA. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci USA. 2010;107(40):17158-17163. doi: 10.1073/pnas.1008685107.
  20. Thompson J, O’Connor M, Mills JA, Dahlberg AE. The Protein Synthesis Inhibitors, Oxazolidinones and Chloramphenicol, Cause Extensive Translational Inaccuracy in vivo. J Mol Biol. 2002;322(2):273-279. doi: 10.1016/s0022-2836(02)00784-2.
  21. Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol. 2017;106(1):22-34. doi: 10.1111/mmi.13750.
  22. Gao YG, Selmer M, Dunham CM, et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science. 2009;326(5953):694-699. doi: 10.1126/science.1179709.
  23. Denel-Bobrowska M, Lukawska M, Bukowska B, et al. Molecular mechanism of action of oxazolinoanthracyclines in cells derived from human solid tumors. Part 2. Toxicol In Vitro. 2018;46:323-334. doi: 10.1016/j.tiv.2017.10.021.
  24. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;2(9):575-579. doi: 10.1016/1074-5521(95)90120-5.
  25. Sobell HM. Actinomycin and DNA transcription. Proc Natl Acad Sci USA.1985;82(16):5328-5331. doi: 10.1073/pnas.82.16.5328.
  26. Ma C, Yang X, Lewis PJ. Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev. 2016;80(1):139-160. doi: 10.1128/MMBR.00055-15.
  27. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565-1574. doi: 10.1021/bi5000564.
  28. van Duijkeren E, Schink AK, Roberts MC, et al. Mechanisms of Bacterial Resistance to Antimicrobial Agents. Microbiol Spectr. 2018;6(1). doi: 10.1128/microbiolspec.ARBA-0019-2017.
  29. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-146. doi: 10.1146/annurev.biochem.78.082907.145923.
  30. Kumar S, Varela M. Molecular mechanisms of bacterial resistance to antimicrobial agents. Microbial pathogens and strategies for combating them: science, technology and education. Ed by A. Méndez-Vilas. Badajoz: Formatex Research Center; 2013. P. 522-534.
  31. Bush K. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001;32(7):1085-1089. doi: 10.1086/319610.
  32. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-71. doi: 10.1016/j.drup.2010.08.003.
  33. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39(3):577-585. doi: 10.1128/aac.39.3.577.
  34. Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133-148. doi: 10.1016/j.drup.2012.05.001.
  35. Gudeta DD, Moodley A, Bortolaia V, Guardabassi L. vanO, a new glycopeptide resistance operon in environmental Rhodococcus equi isolates. Antimicrob Agents Chemother. 2014;58(3):1768-1770. doi: 10.1128/AAC.01880-13.
  36. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance. Antimicrob Agents Chemother. 2003;47(12):3675-3681. doi: 10.1128/aac.47.12.3675-3681.2003.
  37. Cohen KA, Bishai WR, Pym AS. Molecular Basis of Drug Resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2014;2(3). doi: 10.1128/microbiolspec.MGM2-0036-2013.
  38. Lopez M, Kadlec K, Schwarz S, Torres C. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microb Drug Resist. 2012;18(1):13-18. doi: 10.1089/mdr.2011.0073.
  39. Lopez M, Kadlec K, Schwarz S, Torres C. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microb Drug Resist. 2012;18(1):13-18. doi: 10.1089/mdr.2011.0073.
  40. Simonet V, Mallea M, Pages JM. Substitutions in the Eyelet Region Disrupt Cefepime Diffusion through the Escherichia coli OmpF Channel. Antimicrob Agents Chemother. 2000;44(2):311-315. doi: 10.1128/aac.44.2.311-315.2000.
  41. Wolter DJ, Hanson ND, Lister PD. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett. 2004;236(1):137-143. doi: 10.1016/j.femsle.2004.05.039.
  42. Andersen JL, He GX, Kakarla P, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015;12(2):1487-1547. doi: 10.3390/ijerph120201487.
  43. Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie. 2005;87(12):1137-1147. doi: 10.1016/j.biochi.2005.04.012.
  44. Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett. 1999;170(1):251-256. doi: 10.1111/j.1574-6968.1999.tb13381.x.
  45. Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011;6(3): e17549. doi: 10.1371/journal.pone.0017549.
  46. Ito T, Okuma K, Ma XX, et al. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat. 2003;6(1):
  47. -52. doi: 10.1016/s1368-7646(03)00003-7.
  48. Giebelhaus LA, Frost L, Lanka E, et al. The Tra2 core of the IncP(alpha) plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J Bacteriol. 1996;178(21):6378-6381. doi: 10.1128/jb.178.21.6378-6381.1996.
  49. Waters CM, Dunny GM. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol. 2001;183(19):5659-5667. doi: 10.1128/JB.183.19.5659-5667.2001.
  50. Flannagan SE, Clewell DB. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol Microbiol. 2002;44(3):803-817. doi: 10.1046/j.1365-2958.2002.02922.x.
  51. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711-721. doi: 10.1038/nrmicro1234.
  52. Johnsborg O, Eldholm V, Havarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol. 2007;158(10):767-778. doi: 10.1016/j.resmic.2007.09.004.
  53. Cohan FM, Roberts MS, King EC. The Potential for Genetic Exchange by Transformation within a Natural Population of Bacillus Subtilis. Evolution. 1991;45(6):1393-1421. doi: 10.1111/j.1558-5646.1991.tb02644.x.
  54. Slager J, Kjos M, Attaiech L, Veening JW. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell. 2014;157(2):395-406. doi: 10.1016/j.cell.2014.01.068.
  55. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563-602.
  56. Boyd EF, Hill CW, Rich SM, Hartl DL. Mosaic structure of plasmids from natural populations of Esche richia coli. Genetics. 1996;143(3):1091-1100.
  57. Wilkins BM, Chilley PM, Thomas AT, Pocklington MJ. Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: molecular and evolutionary implications. J Mol Biol. 1996;258(3):447-456. doi: 10.1006/jmbi.1996.0261.
  58. Becker EC, Meyer RJ. Acquisition of resistance genes by the IncQ plasmid R1162 is limited by its high copy number and lack of a partitioning mechanism. J Bacteriol. 1997;179(18):5947-5950. doi: 10.1128/jb.179.18.5947-5950.1997.
  59. Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell. 2011;144(4):590-600. doi: 10.1016/j.cell.2011.01.015.
  60. Silver L, Chandler M, de la Tour EB, Caro L. Origin and direction of replication of the drug resistance plasmid R100.1 and of a resistance transfer factor derivative in synchronized cultures. J Bacteriol. 1977;131(3):929-942.
  61. Davanger M, Evensen A. Role of the Pericorneal Papillary Structure in Renewal of Corneal Epithelium. Nature. 1971;229(5286):560-561. doi: 10.1038/229560a0.
  62. Livermore DM. Antibiotic resistance in staphylococci. Int J Antimicrob Agents. 2000;16:3-10. doi: 10.1016/s0924-8579(00)00299-5.
  63. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. doi: 10.1128/MMBR.00016-10.
  64. Darmon E, Leach DR. Bacterial genome instability. Microbiol Mol Biol Rev. 2014;78(1):1-39. doi: 10.1128/MMBR.00035-13.
  65. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296-316. doi: 10.1128/MMBR.00048-05.
  66. Kaushik M, Kumar S, Kapoor RK, et al. Integrons in Enterobacteriaceae: diversity, distribution and epidemio logy. Int J Antimicrob Agents. 2018;51(2):167-176. doi: 10.1016/j.ijantimicag.2017.10.004.
  67. Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation On Demand. Microbiol Spectr. 2015;3(2): MDNA3-0019-2014. doi: 10.1128/microbiolspec.MDNA3-0019-2014.
  68. Boucher Y, Labbate M, Koenig JE, Stokes HW. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol. 2007;15(7):301-9. doi: 10.1016/j.tim.2007.05.004.
  69. Guerin E, Cambray G, Sanchez-Alberola N, et al. The SOS response controls integron recombination. Science. 2009;324(5930):1034. doi: 10.1126/science.1172914.
  70. Baharoglu Z, Krin E, Mazel D. Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J Bacteriol. 2012;194(7):1659-1667. doi: 10.1128/JB.05982-11.
  71. Juhas M, van der Meer JR, Gaillard M, et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews. 2009;33(2):376-393. doi: 10.1111/j.1574-6976.2008.00136.x.
  72. Llosa M, Gomis-Ruth FX, Coll M, Cruz Fdl. Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol. 2002;45(1):1-8. doi: 10.1046/j.1365-2958.2002.03014.x.
  73. Delavat F, Miyazaki R, Carraro N, et al. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev. 2017;41(4):512-537. doi: 10.1093/femsre/fux008.
  74. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281. doi: 10.1111/j.1469-0691.2011.03570.x.
  75. Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J. 2015;9(4):958-967. doi: 10.1038/ismej.2014.193.
  76. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2). doi: 10.1128/microbiolspec.VMBF-0016-2015.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Примеры мишеней действия некоторых антибиотиков. Антибиотики сгруппированы по принципу действия; цифрами обозначены группы механизмов действия антибиотиков; стрелки указывают мишени действия антибиотиков. ПАБК — парааминобензойная кислота; ДГФ — дигидрофолат; ТГФ — тетрагидрофолат

Скачать (352KB)
3. Рис. 2. Примеры бактериальной устойчивости к действию антибиотиков. Антибиотики сгруппированы по принципу бактериального ответа; цифрами обозначены группы механизмов устойчивости; линии обозначают инактивацию действия антибиотиков. ПАБК — параминобензойная кислота; ДГФ — дигидрофолат; ТГФ — тетрагидрофолат

Скачать (500KB)
4. Рис. 3. Организация интегрона: а — инсерция и вырезание кассет: функциональная платформа содержит ген интегразы intI, промотор интегразы — Pint, промотор кассет — Pc и attI — рекомбинационный сайт в функциональной платформе интегрона; attC — рекомбинационный сайт в кассете. Инсерция и вырезание кассеты катализируются интегразой IntI с образованием гибридного сайта. Стрелки внутри кассет указывают направление открытых рамок считывания; b — экс прессия кассет. Кассеты обозначены короткими стрелками, уровень экспрессии обозначен интенсивностью цвета стрелок (модифицировано из [66])

Скачать (89KB)

© Землянко О.М., Рогоза Т.М., Журавлева Г.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах