Populations of the Caucasus as an object for studying the process of adaptation to conditions of high-altitude hypoxia
- Authors: Dzhaubermezov M.A.1,2, Ekomasova N.V.1,2, Mustafin R.N.3, Chagarov O.S.4, Fedorova Y.Y.1, Gabidullina L.R.1, Nurgalieva A.K.1, Prokofyeva D.S.1, Khusnutdinovna E.K.1,2
-
Affiliations:
- Ufa University of Science and Technology
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences
- Bashkir State Medical University
- Moscow State University named after M.V. Lomonosov
- Issue: Vol 22, No 3 (2024)
- Pages: 277-292
- Section: Human ecological genetics
- URL: https://journals.rcsi.science/ecolgenet/article/view/271614
- DOI: https://doi.org/10.17816/ecogen630869
- ID: 271614
Cite item
Abstract
The work examines the main mechanisms responsible for the process of acclimatization of the population of high mountain regions to the conditions of hypobaric hypoxia. The purpose of this review is to describe the pathways of genetic, epigenetic and physiological control in the adaptation of indigenous populations of highlands to reduced barometric pressure and oxygen tension in the environment. It has been shown that populations living in different high-mountain regions demonstrate different ways of adaptation in response to a decrease in the partial pressure of oxygen in the inspired air. The changes that occur in the body in response to stressful conditions are extremely diverse. These include changes in the respiratory, cardiovascular, hematological systems and cellular adaptation. In this review, we examine genomic variations leading to evolutionary adaptation to life at high altitudes, gene expression, pathophysiological and metabolic features, and long-term adaptation in various high-altitude populations. We also consider the peoples of the Caucasus as one of the most promising populations for further study of complex adaptation mechanisms.
Full Text
##article.viewOnOriginalSite##About the authors
Murat A. Dzhaubermezov
Ufa University of Science and Technology; Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences
Author for correspondence.
Email: murat-kbr@mail.ru
ORCID iD: 0000-0003-1570-3174
SPIN-code: 1066-3369
Scopus Author ID: 57196059060
Cand. Sci. (Biology)
Russian Federation, Ufa; UfaNatalia V. Ekomasova
Ufa University of Science and Technology; Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences
Email: trofimova_nata_@mail.ru
ORCID iD: 0000-0003-3996-5734
SPIN-code: 6528-4117
Cand. Sci. (Biology)
Russian Federation, Ufa; UfaRustam N. Mustafin
Bashkir State Medical University
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-code: 4810-2535
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018
Cand. Sci. (Biology)
Russian Federation, UfaOngar S. Chagarov
Moscow State University named after M.V. Lomonosov
Email: chagarov89@gmail.com
ORCID iD: 0000-0002-1857-4163
SPIN-code: 1455-0797
Russian Federation, Moscow
Yuliya Y. Fedorova
Ufa University of Science and Technology
Email: fedorova-y@yandex.ru
ORCID iD: 0000-0002-9344-828X
SPIN-code: 5497-0441
Cand. Sci. (Biology)
Russian Federation, UfaLiliya R. Gabidullina
Ufa University of Science and Technology
Email: liliya.gab@gmail.com
ORCID iD: 0009-0007-1575-2642
SPIN-code: 2799-0206
Russian Federation, Ufa
Alfiya K. Nurgalieva
Ufa University of Science and Technology
Email: alfiyakh83@gmail.com
ORCID iD: 0000-0001-6077-9237
SPIN-code: 9658-8010
Cand. Sci. (Biology)
Russian Federation, UfaDarya S. Prokofyeva
Ufa University of Science and Technology
Email: dager-glaid@yandex.ru
ORCID iD: 0000-0003-0229-3188
SPIN-code: 7918-4737
Scopus Author ID: 57207892550
Cand. Sci. (Biology)
Russian Federation, UfaElza K. Khusnutdinovna
Ufa University of Science and Technology; Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences
Email: elzakh@mail.ru
ORCID iD: 0000-0003-2987-3334
SPIN-code: 7408-9797
ResearcherId: A-4810-2013
Dr. Sci. (Biology)
Russian Federation, Ufa; UfaReferences
- Naumenko SE. Mountain sickness: textbook. Novosibirsk: IPC NSU; 2018. 72 p. (In Russ.)
- Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107–114. doi: 10.1056/NEJM200107123450206
- Burtscher M, Hefti U, Hefti JP. High-altitude illnesses: Old stories and new insights into the pathophysiology, treatment and prevention. Sport Med Health Sci. 2021;3(2):59–69. doi: 10.1016/j.smhs.2021.04.001
- Bigham AW, Lee FS. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 2014;28(20):2189–2204. doi: 10.1101/gad.250167.114
- Paralikar SJ, Paralikar JH. High-altitude medicine. Indian J Occup Environ Med. 2010;14(1):6–12. doi: 10.4103/0019-5278.64608
- Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude. PNAS USA. 2021;118(18): e2102463118. doi: 10.1073/pnas.2102463118
- Aldenderfer M. Modelling plateau peoples: The early human use of the world’s high plateau. World Archaeol. 2007;38(3):357–370. doi: 10.1080/00438240600813285
- Zhang XL, Ha BB, Wang SJ, et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science. 2018;362(6418):1049–1051. doi: 10.1126/science.aat8824
- Rademaker K, Hodgins G, Moore K, et al. Paleoindian settlement of the high-altitude Peruvian Andes. Science. 2014;346(6208): 466–469. doi: 10.1126/science.1258260
- Munchayev RM. Caucasus at the dawn of the Bronze Age. Moscow: Nauka; 1974. 416 p. (In Russ.)
- Semyonov PP, editor. Picturesque Russia. Caucasus. Vol. IX. Saint Petersburg, Moscow: Edition of the M.O. Wolf; 1883. P. II. (In Russ.)
- Tizengausen G. Collection of materials relating to the history of the Golden Horde. Vol. II: Extracts from Persian writings. 1941. P. 181. (In Russ.)
- Gvozdetsky NA. Caucasus. Sketch of nature. Moscow: Geografgiz; 1963. 262 p. (In Russ.)
- Treskov IV, editor. Materials of the scientific session on the problem of the origin of the Balkar and Karachai peoples; 1959 June 22–26. Nalchik: Kabardino-Balkarian Book Publishing House; 1960. (In Russ.)
- Karaketov MD, Sabanchiev H-MA, editors. Karachais. Balkars. Moscow: Nauka; 2014. 815 p. (In Russ.)
- Alekseev VP. Origin of the peoples of the Caucasus. Craniological study. Moscow: Nauka; 1974. 317 p. (In Russ.)
- rosstat.gov.ru [Internet]. Federal state statistics service [cited 2024 Apr 4]. Available from: https://rosstat.gov.ru/ (In Russ.)
- topographic-map.com [Internet]. Federal state statistics service [cited 2024 Apr 1]. Available from: https://ru-ru.topographic-map.com/ (In Russ.)
- Miziev IM. Traces on Elbrus. Karachaevsk: KChGPU; 2001. 184 p. (In Russ.)
- Brutsaert TD, Kiyamu M, Elias Revollendo G, et al. Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. PNAS USA. 2019;116(48):24006–24011. doi: 10.1073/pnas.1906171116
- Heinrich EC, Wu L, Lawrence ES, et al. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet. 2019;83(3):171–176. doi: 10.1111/ahg.12299
- Bigham A, Bauchet M, Pinto D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116. doi: 10.1371/journal.pgen.1001116
- Bigham AW, Wilson MJ, Julian CG, et al. Andean and Tibetan patterns of adaptation to high altitude. Am J Hum Biol. 2013;25(2): 190–197. doi: 10.1002/ajhb.22358
- Pagani L, Ayub Q, MacArthur DG, et al. High altitude adaptation in Daghestani populations from the Caucasus. Hum Genet. 2012;131(3):423–433. doi: 10.1007/s00439-011-1084-8
- Lessel D, Vaz B, Halder S, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–1244. doi: 10.1038/ng.3103
- Wu B, Guo W. The exocyst at a glance. J Cell Sci. 2015;128(16):2957–2964. doi: 10.1242/jcs.156398
- Rajput C, Arif E, Vibhuti A, et al. Predominance of interaction among wild-type alleles of CYP11B2 in Himalayan natives associates with high-altitude adaptation. Biochem Biophys Res Commun. 2006;348(2):735–740. doi: 10.1016/j.bbrc.2006.07.116
- Mallet RT, Burtscher J, Pialoux V, et al. Molecular mechanisms of high-altitude acclimatization. Int J Mol Sci. 2023;24(2):1698. doi: 10.3390/ijms24021698
- Ahsan A, Norboo T, Baig MA, Qadar Pasha MA. Simultaneous selection of the wild-type genotypes of the G894T and 4B/ 4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet. 2005;69(3):260–267. doi: 10.1046/j.1529-8817.2005.00158.x
- Droma Y, Hanaoka M, Basnyat B, et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in Sherpas. High Alt Med Biol. 2006;7(3):209–220. doi: 10.1089/ham.2006.7.209
- Liu L, Zhang Y, Zhang Z, et al. Associations of high altitude polycythemia with polymorphisms in EPHA2 and AGT in Chinese Han and Tibetan populations. Oncotarget. 2017;8(32):53234–53243. doi: 10.18632/oncotarget.18384
- Dijkstra AE, Postma DS, van Ginneken B, et al. Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses. Am J Respir Crit Care Med. 2015;191(5):547–556. doi: 10.1164/rccm.201405-0840OC
- Oshima N, Onimaru H, Yamagata A, et al. Erythropoietin, a putative neurotransmitter during hypoxia, is produced in RVLM neurons and activates them in neonatal Wistar rats. Am J Physiol Regul Integr Comp Physiol. 2018;314(5):R700–R708. doi: 10.1152/ajpregu.00455.2017
- Silverman EK. Genetics of COPD. Annu Rev Physiol. 2020;82: 413–431. doi: 10.1146/annurev-physiol-021317-121224
- Dmytriiev K, Mostovoy Y, Slepchenko N, Smereka Y. Clinical course of COPD in patients with Arg16Gly (rs1042713) polymorphism of ADRB2 gene. Monaldi Arch Chest Dis. 2022;93(2):2314. doi: 10.4081/monaldi.2022.2314
- Wang Y, Li Z, Zhang X, et al. EPO rs1617640 A>C is a protective factor for chronic obstructive pulmonary disease: A case control study. Front Biosci (Landmark Ed). 2023;28(9):215. doi: 10.31083/j.fbl2809215
- Young JM, Williams DR, Thompson AAR. Thin air, thick vessels: historical and current perspectives on hypoxic pulmonary hypertension. Front Med (Lausanne). 2019;6:93. doi: 10.3389/fmed.2019.00093
- Wang N, Hua J, Fu Y, et al. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol. 2023;11:1125723. doi: 10.3389/fcell.2023.1125723
- Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–78. doi: 10.1126/science.1190371
- Huerta-Sánchez E, Casey FP. Archaic inheritance: Supporting high-altitude life in Tibet. J Appl Physiol (1985). 2015;119(10): 1129–1134. doi: 10.1152/japplphysiol.00322.2015
- Zhang X, Witt KE, Bañuelos MM, et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. PNAS USA. 2021;118(22):e2020803118. doi: 10.1073/pnas.2020803118
- Döring F, Onur S, Fischer A, et al. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes. J Appl Physiol (1985). 2010;108(6):1497–500. doi: 10.1152/japplphysiol.01165.2009
- Malczewska-Lenczowska J, Orysiak J, Majorczyk E, et al. HIF-1α and NFIA-AS2 polymorphisms as potential determinants of total hemoglobin mass in endurance athletes. J Strength Cond Res. 2022;36(6):1596–1604. doi: 10.1519/JSC.0000000000003686
- Ipekoglu G, Cetin T, Apaydin N, et al. The role of AGT, AMPD1, HIF1α, IL-6 gene polymorphisms in the athletes’ power status: A meta-analysis. J Hum Kinet. 2023;89:77–87. doi: 10.5114/jhk/169262
- Vadapalli S, Rani HS, Sastry B, Nallari P. Endothelin-1 and endothelial nitric oxide polymorphisms in idiopathic pulmonary arterial hypertension. Int J Mol Epidemiol Genet. 2010;1(3):208–213. doi: 10.1007/s12041-011-0008-7
- Tobe SW, Baker B, Hunter K, et al. The impact of endothelin-1 genetic analysis and job strain on ambulatory blood pressure. J Psychosom Res. 2011;71(2):97–101. doi: 10.1016/j.jpsychores.2011.01.003
- Ahmed M, Rghigh A. Polymorphism in Endothelin-1 gene: An overview. Curr Clin Pharmacol. 2016;11(3):191–210. doi: 10.2174/1574884711666160701000900
- Yu J, Liu C, Zhang C, et al. EDN1 gene potentially involved in the development of acute mountain sickness. Sci Rep. 2020;10(1):5414. doi: 10.1038/s41598-020-62379-z
- Scheinfeldt LB, Soi S, Thompson S, et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 2012;13(1):R1. doi: 10.1186/gb-2012-13-1-r1
- Alkorta-Aranburu G, Beall CM, Witonsky DB, et al. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 2012;8(12):e1003110. doi: 10.1371/journal.pgen.1003110
- Getu A. Ethiopian native highlander’s adaptation to chronic high-altitude hypoxia. Biomed Res Int. 2022;2022:5749382. doi: 10.1155/2022/5749382
- Hirsilä M, Koivunen P, Günzler V, et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. Biol Chem. 2003;278(33):30772–30780. doi: 10.1074/jbc.M304982200
- Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54. doi: 10.1016/s0092-8674(01)00507-4
- Metzen E, Berchner-pfannschmidt U, Stengel P, et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. Cell Sci. 2002;116(7):1319–1326. doi: 10.1242/jcs.00318
- Cioffi CL, Liu XQ, Kosinski PA, et al. Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophys Res Commun. 2003;303(3):947–953. doi: 10.1016/s0006-291x(03)00453-4
- Naranjo-Suárez S, Castellanos MC, Alvarez-Tejado M, et al. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation. J Biol Chem. 2003;278(34):31895–31901. doi: 10.1074/jbc.M304079200
- Lopez-Mosqueda J, Maddi K, Prgomet S, et al. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. Elife. 2016;5:e21491. doi: 10.7554/eLife.21491
- Julian CG, Pedersen BS, Salmon CS, et al. Unique DNA methylation patterns in offspring of hypertensive pregnancy. Clin Transl Sci. 2015;8(6):740–745. doi: 10.1111/cts.12346
- Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol. 2017;123(5):1362–1370. doi: 10.1152/japplphysiol.00351.2017
- Childebayeva A, Jones TR, Goodrich JM, et al. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Epigenetics. 2019;14(1):1–15. doi: 10.1080/15592294.2018.1561117
- Childebayeva A, Goodrich JM, Leon-Velarde F, et al. Genome-wide epigenetic signatures of adaptive developmental plasticity in the Andes. Genome Biol Evol. 2021;13(2):evaa239. doi: 10.1093/gbe/evaa239
- Peng Y, Cui C, He Y, et al. Down-regulation of EPAS1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Mol Biol Evol. 2017;34(4):818–830. doi: 10.1093/molbev/msw280
- Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia. 2015;47(7):729–743. doi: 10.1111/and.12359
- West JB. Physiological effects of chronic hypoxia. N Engl J Med. 2017;376(20):1965–1971. doi: 10.1056/NEJMra1612008
- Gao Y-M, Han G-X, Xue C-H, et al. Expression of key enzymes in glucose metabolism in chronic mountain sickness and its correlation with phenotype. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023;31(1):197–202. doi: 10.19746/j.cnki.issn.1009-2137.2023.01.031
- Zhang P, Li Z, Yang F, et al. Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics. Biosci Rep. 2021;41(1):BSR20202219. doi: 10.1042/BSR20202219
- Villafuerte FC, Corante N. Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Alt Med Biol. 2016;17(2):61–69. doi: 10.1089/ham.2016.0031
- León-Velarde F, Richalet JP. Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol. 2006;7(2):125–137. doi: 10.1089/ham.2006.7.125
- Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. PNAS USA. 2007;104(S1):8655–8660. doi: 10.1073/pnas.0701985104
- Tremblay JC, Hoiland RL, Carter HH, et al. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. Am J Physiol Heart Circ Physiol. 2018;315(6):H1532–H1543. doi: 10.1152/ajpheart.00345.2018
- Richalet J-P, Hermand E, Lhuissier FJ. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol. 2024;21(2): 75–88. doi: 10.1038/s41569-023-00924-9
- León-Velarde F, Villafuerte FC, Richalet JP. Chronic mountain sickness and the heart. Prog Cardiovasc Dis. 2010;52(6):540–549. doi: 10.1016/j.pcad.2010.02.012
- Doutreleau S, Ulliel-Roche M, Hancco I, et al. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness. Eur J Prev Cardiol. 2022;29(17):2154–2162. doi: 10.1093/eurjpc/zwac166
- Bailey DM, Brugniaux JV, Filipponi T, et al. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J Physiol. 2019;597(2):611–629. doi: 10.1113/JP276898
- Shanjun Z, Shenwei X, Bin X, et al. Individual chronic mountain sickness symptom is an early warning sign of cognitive impairment. Physiol Behav. 2020;214:112748. doi: 10.1016/j.physbeh.2019.112748
- Thiersch M, Swenson ER. High altitude and cancer mortality. High Alt Med Biol. 2018;19(2):116–123. doi: 10.1089/ham.2017.0061
- San Martin R, Brito J, Siques P, León-Velarde F. Obesity as a conditioning factor for high-altitude diseases. Obes Facts. 2017;10(4):363–372. doi: 10.1159/000477461
- Ortiz-Prado E, Portilla D, Mosquera-Moscoso J, et al. Hematological parameters, lipid profile, and cardiovascular risk analysis among genotype-controlled indigenous Kiwcha men and women living at low and high altitudes. Front Physiol. 2021;12:749006. doi: 10.3389/fphys.2021.749006
- Kang J-G, Sung HJ, Amar MJ, et al. Low ambient oxygen prevents atherosclerosis. J Mol Med (Berl). 2016;94(3):277–286. doi: 10.1007/s00109-016-1386-3
- Beall CM. Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum Biol. 2000;72(1):201–228.
- Yao H, Zhao H, Wang J, Haddad GG. Intracellular pH regulation in iPSCs-derived astrocytes from subjects with chronic mountain sickness. Neuroscience. 2018;375:25–33. doi: 10.1016/j.neuroscience.2018.02.008
- Liu H, Tang F, Su J, et al. EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells Mol Dis. 2020;84:102446. doi: 10.1016/j.bcmd.2020
- Tegako LI, Kmetinsky E. Anthropology: Textbook. Moscow: New Knowledge; 2004. (In Russ.)
- Alekseev VP. Geography of human races. Moscow: Mysl; 1974. 351 p. (In Russ.)
- Rychkov YuG. Anthropology and genetics of isolated populations (ancient isolates of the Pamirs). Moscow: MSU Publishing House; 1969. 222 p. (In Russ.)
- Alekseeva TH. Adaptive processes in human populations. Moscow: MSU Publishing House; 1986. 215 p. (In Russ.)
- Alekseeva TH. Human adaptation in different ecological niches (biological aspects). Moscow: MNEPU Publishing House; 1998. 283 p. (In Russ.)
- Alekseev VP. Essays on human ecology. Moscow: Nauka; 1993. 191 p. (In Russ.)
- Bunak VV. Climato-zonal and ethnic differences in facial and head structure in the indigenous population of North Asia (in connection with the problem of adaptation). In: Barbashova ZI, Likhnitska AI, editors. Human adaptation. Leningrad: Nauka; 1972. (In Russ.)
- Spitsyn VA. Ecological genetics. Moscow: Nauka; 2008. 502 p. (In Russ.)
- Lordkipanidze D, Jashashvili T, Vekua A, et al. Postcranial evidence from early Homo from Dmanisi, Georgia. Nature. 2007;449(7160):305–310. doi: 10.1038/nature06134
- Adler DS, Bar-Yosef O, Belfer-Cohen A, et al. Dating the demise: neandertal extinction and the establishment of modern humans in the Southern Caucasus. J Hum Evol. 2008;55(5):817–833. doi: 10.1016/j.jhevol.2008.08.010
- Yeakel JD, Guimarães PR, Bocherens H, Koch PL. The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. Proc R Soc B. 2013;280(1762):20130239. doi: 10.1098/rspb.2013.0239
- Tallavaara M, Luoto M, Korhonen N, et al. Human population dynamics in Europe over the Last Glacial Maximum. PNAS. 2015;112(27):8232–8237. doi: 10.1073/pnas.1503784112
- Mongait AL. Archaeology of Western Europe. Stone Age. Moscow: Nauka; 1973. 355 p. (In Russ.)
- Stewart JR, Stringer CB. Human evolution out of Africa: The role of refugia and climate change. Science. 2012;335(6074):1317–1321. doi: 10.1126/science.1215627
- Yunusbayev B, Metspalu M, Jarve M, et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012;29(1):359–365. doi: 10.1093/molbev/msr221
- Platt DE, Haber M, Dagher-Kharrat MB, et al. Mapping post-glacial expansions: The peopling of Southwest Asia. Sci Rep. 2017;6(7):40338. doi: 10.1038/srep40338
- Burnley C, Lang D. The Ancient Caucasus. From the prehistoric settlements of Anatolia to the Christian Kingdoms of the Early Middle Ages. Saint Petersburg: Centerpoligraf; 2016. (In Russ.)
- Miziev IM. History of Balkaria and Karachay from the most ancient times to the campaigns of Timur. Nalchik: El-Fa; 1996. (In Russ.)
- Yanin VL, editor. Archaeology: Textbook. Moscow: MSU Publishing House; 2006. 608 p. (In Russ.)
- Martynov AI. Archaeology. Moscow: Vyshaya Shkola; 2005. 447 p. (In Russ.)
- Ryndina NV, Ravich IG. On metal production of the Maikop tribes of the North Caucasus (on the data of chemical-technological studies). Vestnik arheologii, antropologii i etnografii. 2012;(2):4–20. (In Russ.) EDN: PBHERF
- Erdniev UE. The main results of the archaeological study of Southern Kalmykia. In: Erdniev UE, editor. Theses of reports of IX Krupnov readings on archeology of the Caucasus. Elista: Kalmyk State University; 1979. (In Russ.)
- Batchaev VM. Burial monuments near the villages of Lechinkai and Bylym. Archaeological research on new buildings in Kabardino-Balkaria. Nalchik; 1984. (In Russ.)
- Markovin VI. Culture of the tribes of the North Caucasus in the Bronze Age (II millennium BC). Moscow: Publishing House of the Academy of Sciences of the USSR; 1960. 148 p. (In Russ.)
- Ivanchik AI. Cimmerians. Ancient Eastern Civilizations and Steppe Nomads in the VIII–VII centuries B.C. Moscow: Institute of General History; 1996. 324 p. (In Russ.)
- Artamonov MI. History of the Khazars. Saint Petersburg: Faculty of Philosophy, SPbSU; 2002. 549 p. (In Russ.)
- Brook KA. The jews of Khazaria. 2nd edit. Plymouth: Rowman and Littlefield Publishers; 2006. 315 p.
- Tishkov VA, editor. Socio-political history of the North Caucasus (before the collapse of the USSR). Moscow: IEA RAS; 2015. 89 p. (In Russ.)
- Khit GL. Dermatoglyphics and the Rasogenesis of the Caucasian Population. Ancient Caucasus: retrospection of cultures. In: XXIV Krupnov Readings on the Archaeology of the North Caucasus. Moscow; 2004. P. 198–200. (In Russ.)
- Dzhaubermezov MA, Ekomasova NV, Khusainova RI, et al. Genetic characterization of Balkars and Karachays according to the variability of the Y chromosome. Russian Journal of Genetics. 2017;53(10): 1224–1231. EDN: ZIDOIL doi: 10.7868/S0016675817100034
- Dzhaubermezov MA, Ekomasova NV, Gabidullina LR, et al. Genetic characterization of Bbalkars and Karachays using MTDNA data. Russian Journal of Genetics. 2019;55(1):110–120. EDN: YUBAFF doi: 10.1134/S0016675819010053
- Kutuev IA, Khusnutdinova EK. Genetic structure and molecular phylogeography of the peoples of Eurasia. Ufa: Gilem; 2011. 240 p. (In Russ.)
Supplementary files
